文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题

这篇具有很好参考价值的文章主要介绍了文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

二、假设我们将球投入到b个箱子里,直到某个箱子中有两个球。每一次投掷都是独立的并且每个球落入任何箱子的机会均等。请问投球次数期望是多少?

文心一言:

这是一个典型的鸽巢原理(Pigeonhole Principle)问题。假设每次投球时,每个箱子有1/b的概率被选中。我们设投球次数为x。

我们首先考虑,在前x-1次投球中,没有任何一个箱子中有两个球的概率。我们可以将这个概率表示为:

P(no two balls in any box | first x-1 throws) = (b-1) / b × (1/b) × … × (1/b) = (b-1)/b^(x-1)

这个概率表示在前x-1次投球中,每个箱子最多只有一个球的概率。因为每次投球时,每个箱子有1/b的概率被选中,所以前x-1次投球中,每个箱子最多只有一个球的概率是(b-1)/b × (1/b) × … × (1/b) = (b-1)/b^(x-1)。

根据鸽巢原理,在第x次投掷时,至少有两个球会在同一个箱子中的概率是1减去前x-1次投球中没有任何一个箱子中有两个球的概率,即:

P(at least two balls in one box | on throw x) = 1 - P(no two balls in any box | first x-1 throws) = 1 - (b-1)/b^(x-1)

根据鸽巢原理,在第x+1次投掷时,至少有两个球会在同一个箱子中的概率仍然是1减去前x次投球中没有任何一个箱子中有两个球的概率,即:

P(at least two balls in one box | on throw x+1) = 1 - P(no two balls in any box | first x throws) = 1 - (b-1)/b^x

因此,在第x+1次投掷时,至少有两个球会在同一个箱子中的概率与第x次投掷时相同。这意味着我们可以用第x+1次投掷时的概率来计算期望值。

期望值E(x)等于第x+1次投掷时至少有两个球会在同一个箱子中的概率乘以x+1:

E(x) = P(at least two balls in one box | on throw x+1) × (x+1) = 1 - (b-1)/b^x × (x+1)

我们可以使用微积分来求解这个期望值的极限值。极限值可以通过将x趋于无穷大来得到:

limit(E(x)) as x approaches infinity = 1/b + 1/(b-1)

因此,期望的投球次数是1/b + 1/(b-1)。

文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题

讯飞星火:

我们可以使用几何概率的方法来解决这个问题。假设每个箱子有相同的概率被投掷到,即p。那么,投入一个球到某个箱子的概率是1/b,因为有b个箱子。

现在,我们需要找到投入两个球到同一个箱子的概率。这意味着在前一次投掷中,另一个球没有落入这个箱子。因此,前一次投掷的概率是1-1/b,而后一次投掷的概率仍然是1/b。所以,投入两个球到同一个箱子的概率是:

P(2个球在同一箱子) = (1 - 1/b) * (1/b) = 1 - 1/b^2

由于每次投掷都是独立的,我们可以将这个问题转化为求和问题:

E(投球次数) = Σ[n * (1 - 1/b^2)] + C(n+1, 2) * (1/b^2)

其中n表示投掷次数,C(n+1, 2)表示从n+1个球中选择2个球的组合数。

为了计算E(投球次数),我们需要找到使上式成立的b值。注意到当b=1时,这个等式成立:

E(投球次数) = Σ[n * (1 - 1/b^2)] + C(n+1, 2) * (1/b^2) = n * (n + 1) / 2 + (n + 1) / b^2

当b > 1时,我们可以通过数值方法求解这个等式。经过计算,我们得到:

E(投球次数)≈ 6.389

因此,投球次数的期望大约是6.389次。

文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题

华为盘古:

设投球次数为N(表示总投球次数),那么当球投入到b个箱子里时,每个箱子都分配了一份球。因此,我们有:

N = b * 1 / 2

现在我们有两个球,因此:

N = 2 * 1 / 2

因此,总投球次数的期望为:

N = 2 * 1 / 2 = 4.5。

因此,当球投入到b个箱子里时,总投球次数的期望为4.5。

文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题

360智脑:

设投球的次数为n次,则每次投球的期望值是1/2。因为每次投掷都独立且相等概率地发生,所以n次投掷的期望也是1/2n=1/2(n+1)。因此,投球次数的期望是(n+1)/2。

文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题

chatglm:

这是一个经典的概率问题,可以使用期望值的公式来计算投球次数的期望。

设投球次数为 x,每个球落入任何箱子的概率都为 1/b,则 x 的期望值为:

E(x) = Σ[i=1 to x] (1/b) * P(x=i)

其中,P(x=i) 表示在 x 次投掷中,投中 i 个箱子的概率。

由于每次投掷的结果是独立的,因此前一次投中某个箱子不会影响下一次投掷的结果。因此,P(x=i) 可以表示为:

P(x=i) = (b-i)/(b*b)

将 P(x=i) 代入期望值公式中,得到:

E(x) = Σ[i=1 to x] (1/b) * (b-i)/(b*b)

= Σ[i=0 to x] (1/b) * (b-i)  

= b*Σ[i=0 to x] (1/b) - x*Σ[i=0 to x] (1/b)^2

其中,Σ[i=0 to x] 表示求和符号,表示从 0 到 x 的所有整数。

由于题目要求直到某个箱子中有两个球为止,因此 x 的取值范围是 0 到 b。对于每个 x,都有 i=0 的情况,因此要扣除这个次数。

期望的计算公式中的分母 b*b 表示所有箱子的数量之和,即 b(b-1)/2。因此,上述公式可以简化为:

E(x) = bΣ[i=0 to x] (1/b) - xΣ[i=0 to x] (1/b)^2

= b*(1-(1/b)^x) - x*(1/b)^2

最终,投球次数期望为:

E(x) = b*(1-(1/b)^x) - x*(1/b)^2

其中,b 为箱子的数量,x 为投球次数。

文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题

chatgpt:

这个问题可以用“生日悖论”或“抽屉原理”来解决。根据生日悖论,当投掷的次数超过23次时,存在两个球落入同一箱子的概率大于0.5;当投掷的次数超过32次时,存在两个球落入同一箱子的概率大于0.75。因此,根据期望的定义,可以估算出投球次数的期望值,如下所示:

  • 当箱子数量为b时,第一次投掷必须是一个新的球落入一个空箱子中,概率为b/b=1。第二个球必须落在新的箱子里,概率为(b-1)/b。第三个球有2个选择:要么落在前两个球所在的箱子,概率为2/b,要么落在另一个空箱子里,概率为(b-2)/b。以此类推,第i个球有i-1个选择。因此,投球次数的期望可以表示为:

E = 1×(b/b) + 2×((b-1)/b) + 3×((2/b)×((b-1)/b) + (b-2)/b) + … + (i-1)×(i-2)×…×2×((b-1)/b)×(1/b)

简化上述式子,可以得到:

E = b×(1 + 1/2 + 1/3 + … + 1/(b-1))

当b趋近于正无穷时,可以使用自然对数e的级数展开式计算上式右侧的和,得到:

E ≈ b×ln(b)

因此,当箱子数量为b时,投球次数的期望值约为b×ln(b)次。

文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题文章来源地址https://www.toymoban.com/news/detail-498995.html

到了这里,关于文心一言 VS 讯飞星火 VS chatgpt (38)-- 算法导论5.4 2题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (27)-- 算法导论5.1 2题

    假设我们有一个伪随机数生成器,可以生成在[0,1)范围内的随机数。那么我们可以使用以下算法实现从一个[a, b]范围内的随机数: 1.首先生成一个随机数r,在[0,1)范围内。 2.检查r是否大于a。如果是,则重复步骤1,直到r小于等于a。 3.计算x = (b-a) * r + a。x就是在[a, b]范围内的随

    2024年02月07日
    浏览(39)
  • 文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

    可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到: p(N0, N1|p) = p(N0, N1, p) / p(p) 其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次

    2024年02月07日
    浏览(40)
  • 文心一言 VS 讯飞星火 VS chatgpt (79)-- 算法导论7.4 4题

    首先,为了证明RANDOMIZED-QUICKSORT的期望运行时间是Ω(nlg n),我们需要证明在最坏的情况下,该算法的运行时间是O(nlg n)。然后,我们需要证明在最坏的情况下,算法的期望运行时间是Ω(nlg n)。 RANDOMIZED-QUICKSORT算法是基于快速排序的一种随机化版本,其中在每次递归分割时,随机

    2024年02月12日
    浏览(51)
  • 文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题

    文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题 要证明在最坏情况下,HEAPSORT 的时间复杂度是 Ω(n log n),我们需要考虑在何种情况下堆排序的时间复杂度最低。 在堆排序中,构建最大堆的时间复杂度为 O(n),这是因为在最坏情况下,堆中每个元素都需要与其他元素进行

    2024年02月16日
    浏览(30)
  • 文心一言 VS 讯飞星火 VS chatgpt (33)-- 算法导论5.2 5题

    假设A的元素构成(1, 2, …, n)上的一个均匀随机排列,我们可以使用指示器随机变量来计算其中逆序对的数目期望。 首先,我们定义一个指示器随机变量X(i, j),表示A[i]和A[j]是否构成一个逆序对。如果A[i] A[j],则X(i, j) = 1,否则X(i, j) = 0。 根据题目描述,A的元素构成(1, 2, …,

    2024年02月09日
    浏览(55)
  • 文心一言 VS 讯飞星火 VS chatgpt (123)-- 算法导论10.4 4题

    在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其中每个节点都有两个指针:一个指向其第一个孩子(左孩子),另一个指向其下一个兄弟(右兄弟)。对于一个有根树,我们可以使用一个数组来表示它,其中每个索引对应一个节点,每个节点包含两

    2024年02月08日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (31)-- 算法导论5.2 3题

    为了计算掷n个骰子之和的期望值,我们需要先了解一个重要的概念:指示器随机变量。 指示器随机变量是一种特殊的随机变量,它只有两个取值:0和1。通常用I来表示指示器随机变量,它的取值为1表示事件发生,取值为0表示事件未发生。在掷骰子的例子中,我们可以将指示

    2024年02月09日
    浏览(42)
  • 文心一言 VS 讯飞星火 VS chatgpt (63)-- 算法导论6.5 2题

    文心一言 VS 讯飞星火 VS chatgpt (63)-- 算法导论6.5 2题 MAX-HEAP-INSERT(A, 10) 是将元素 10 插入到堆 A 中并保持堆性质的函数。下面是在堆 A=(15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1) 上执行 MAX-HEAP-INSERT(A, 10) 的操作过程: 1.将元素 10 插入到堆的末尾,即将 10 添加到堆的最后一个位置。 2.对插

    2024年02月16日
    浏览(35)
  • 文心一言 VS 讯飞星火 VS chatgpt (58)-- 算法导论6.4 2题

    文心一言 VS 讯飞星火 VS chatgpt (58)-- 算法导论6.4 2题 在 HEAPSORT 算法中使用以下循环不变量是正确的: 1.在算法的第 2~5 行 for 循环每次迭代开始时,子数组 A[1…i] 是一个包含了数组 A[1…n] 中第 i 小元素的最大堆。 2.子数组 A[i+1…n] 包含了数组 A[1…n] 中已排序的 n-i 个最大元

    2024年02月16日
    浏览(39)
  • 文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

    文心一言 VS 讯飞星火 VS chatgpt (53)-- 算法导论6.2 5题 要证明 MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ig(n)),我们需要在大小为 n 的堆上构造一个特定的情况,使得每个节点都需要进行 MAX-HEAPIFY 操作,并且每个操作的运行时间都是 O(log n)。 我们可以将堆的根节点设置为一个较大的

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包