【OpenCV DNN】Flask 视频监控目标检测教程 10

这篇具有很好参考价值的文章主要介绍了【OpenCV DNN】Flask 视频监控目标检测教程 10。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

欢迎关注『OpenCV DNN @ Youcans』系列,持续更新中


本系列从零开始,详细讲解使用 Flask 框架构建 OpenCV DNN 模型的 Web 应用程序。

在上节的基础上,本节介绍使用OpenCV DNN对实时视频进行目标检测。DNN目标检测的基本步骤也是加载图像、模型设置和模型推理。


3.10 OpenCV DNN+Flask实时监控目标检测

在上节的基础上,本节介绍使用OpenCV DNN对实时视频进行目标检测。DNN目标检测的基本步骤也是加载图像、模型设置和模型推理。

我们使用TensorFlow深度学习框架在MS COCO数据集上训练的MobileNet SSD(单次检测器)模型。与其他目标检测模型相比,SSD 模型通常更快。此外,MobileNet 主干网还降低了计算密集度。因此,对于使用OpenCV DNN进行目标检测,MobileNet是一个很好的模型。

MS COCO数据集(https://cocodataset.org/)是当前基于深度学习的对象检测模型的基准数据集。MS COCO包括80类日常物品,从人到汽车,再到牙刷。可以使用文本文件加载 MS COCO 数据集中的所有标签。


1、加载MobileNet SSD模型

在VideoStream类初始化程序中,使用readNet()函数加载MobileNet SSD模型。model为预训练权重文件的路径,即冻结计算图(frozen graph)的路径。Config为模型配置文件的路径,即protobuf文本文件的路径。Framework为加载模型的框架名称,本例中是TensorFlow。

# 加载 DNN 模型:MobileNet SSD 模型
model = cv2.dnn.readNet(model='./models/frozen_inference_graph.pb',
          config='./models/ssd_mobilenet_v2_coco.pbtxt',
          framework='TensorFlow')

2、导入分类名称文件

然后导入读取分类名称文件object_detection_classes_coco.txt,该文件将每个类别名称存储在列表class_names中,用新行分隔每个类别。例如:

[‘person’, ‘bicycle’, ‘car’, ‘motorcycle’, ‘airplane’, ‘bus’, ‘train’, ‘truck’, ‘boat’, ‘traffic light’, … ‘book’, ‘clock’, ‘vase’, ‘scissors’, ‘teddy bear’, ‘hair drier’, ‘toothbrush’, ‘’]

为每个类别随机设置不同颜色COLORS,用于使用指定颜色为每个类别绘制边界框,以便在图像中通过边界框的颜色来区分不同类别。元组COLORS包括3个整数值,表示颜色分量。

# 读取 COCO 类别名称
with open('object_detection_classes_coco.txt', 'r') as f:
   class_names = f.read().split('\n')
  
# 为每个类别随机设置不同的颜色
COLORS = np.random.uniform(0, 255, size=(len(class_names), 3))

3、处理视频帧进行目标检测

本例程在主线程中处理视频帧进行目标检测,使用一个线程update_frame()实时获取新的视频帧。

在主线程中的生成器函数gen_frames()逐帧获取图片,使用MobileNet SSD(单次检测器)模型进行目标检测,将图像编码后返回给客户端。客户端浏览器收到视频流以后,在img标签定义的图片中逐帧显示,从而实现视频播放。

生成器函数gen_frames() 处理视频帧进行目标检测的步骤如下:
(1)由视频帧 frame 创建blob对象;
(2)使用MobileNet SSD模型,进行目标检测;
(3)对检测到的目标进行筛选,确定目标类别和边界框;
(4)在视频帧上绘制边界框,并标注类别名称;
(5)将图像编码后返回给客户端。

例程如下。

# 创建 blob
blob = cv2.dnn.blobFromImage(image=image, size=(300, 300), mean=(104, 117, 123), swapRB=True)

# 基于 DNN 模型的目标检测
start = time.time()
self.model.setInput(blob)  # 模型输入图像
output = self.model.forward()  # 模型前向推理
end = time.time()
fps = 1 / (end - start)  # 计算帧处理速率 FPS

# 目标检测结果的后处理
for detection in output[0, 0, :, :]:
    # 提取检测的置信度
    confidence = detection[2]
    # 当置信度高于阈值时才绘制边界框
    if confidence > 0.5:
        class_id = detection[1]  # 获取类别的id
        if class_id >= 90:  class_id = 89  # 防止类别id超出范围
        class_name = self.class_names[int(class_id) - 1]  # 将id映射为类别标签
        color = self.COLORS[int(class_id)]  # 该类别的颜色设置
        # color = (0, 255, 0)
        # 获取矩形边界框的参数 (x, y, w, h)
        x_box = int(detection[3] * w_img)
        y_box = int(detection[4] * h_img)
        w_box = int(detection[5] * w_img)
        h_box = int(detection[6] * h_img)
        # 在图像上绘制检测目标的矩形边界框
        cv2.rectangle(image, (x_box, y_box), (w_box, h_box), color, thickness=2)
        # 在图像上添加类别名称
        cv2.putText(image, class_name, (x_box, y_box - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
        # 在图像上添加 FPS 文本
        # cv2.putText(image, f"{fps:.2f} FPS", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

4、新建一个Flask项目

新建一个Flask项目cvFlask10,本项目的框架与cvFlask09相同。
cvFlask10项目的文件树如下。

---文件名\
    |---models\
    |    |--- object_detection_classes_coco.txt
    |    |--- ssd_mobilenet_v2_coco.pbtxt
    |    |--- ssd_mobilenet_v2_coco_frozen.pb
    |---templates\
    |    |---index4.html
    |    |---index5.html
|--- cvFlask10.py
|--- vedio_01.mp4

5、Python 程序文件

任务逻辑由Python程序文件cvFlask10.py实现,完整代码如下。

# cvFlask10.py
# OpenCV+Flask 图像处理例程 10
# OpenCV+Flask+threading+MobileNet SSD
# OpenCV 实时读取摄像头,MobileNetSSD 模型目标检测,浏览器实时播放监控视频
# Copyright 2023 Youcans, XUPT
# Crated:2023-5-18

# coding:utf-8

from flask import Flask, Response, request, render_template
import threading
import time
import numpy as np
import cv2

app = Flask(__name__)  # 实例化 Flask 对象

# 定义视频流类
class VideoStream:
    def __init__(self, source):  # 传入视频源
        # 创建视频捕获对象,调用笔记本摄像头
        # cam = cv2.VideoCapture(0, cv2.CAP_DSHOW)  # 修改 API 设置为视频输入 DirectShow
        self.video_cap = cv2.VideoCapture(0)  # 创建视频读取对象
        self.success, self.frame = self.video_cap.read()  # 读取视频帧
        threading.Thread(target=self.update_frame, args=()).start()

        # 加载 DNN 模型:MobileNet SSD V2 模型
        self.model = cv2.dnn.readNet(model="./models/ssd_mobilenet_v2_coco_frozen.pb",
                                config="./models/ssd_mobilenet_v2_coco.pbtxt",
                                framework='TensorFlow')
        # 读取 COCO 类别名称文件
        with open("./models/object_detection_classes_coco.txt", 'r') as f:
            self.class_names = f.read().split('\n')
        # 为每个类别随机设置不同的颜色
        self.COLORS = np.random.uniform(0, 255, size=(len(self.class_names), 3))

    def __del__(self):
        self.video_cap.release()  # 释放视频流

    def update_frame(self):
        while True:
            self.success, self.frame = self.video_cap.read()

    def get_frame(self):
        image = self.frame
        h_img, w_img, _ = image.shape

        # 创建 blob
        blob = cv2.dnn.blobFromImage(image=image, size=(300, 300), mean=(104, 117, 123), swapRB=True)

        # 基于 DNN 模型的目标检测
        start = time.time()
        self.model.setInput(blob)  # 模型输入图像
        output = self.model.forward()  # 模型前向推理
        end = time.time()
        fps = 1 / (end - start)  # 计算帧处理速率 FPS

        # 目标检测结果的后处理
        for detection in output[0, 0, :, :]:
            # 提取检测的置信度
            confidence = detection[2]
            # 当置信度高于阈值时才绘制边界框
            if confidence > 0.5:
                class_id = detection[1]  # 获取类别的id
                if class_id >= 90:  class_id = 89  # 防止类别id超出范围
                class_name = self.class_names[int(class_id)-1]  # 将id映射为类别标签
                color = self.COLORS[int(class_id)]  # 该类别的颜色设置
                # color = (0, 255, 0)
                # 获取矩形边界框的参数 (x, y, w, h)
                x_box = int(detection[3] * w_img)
                y_box = int(detection[4] * h_img)
                w_box = int(detection[5] * w_img)
                h_box = int(detection[6] * h_img)
                # 在图像上绘制检测目标的矩形边界框
                cv2.rectangle(image, (x_box,y_box), (w_box,h_box), color, thickness=2)
                # 在图像上添加类别名称
                cv2.putText(image, class_name, (x_box,y_box-5), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
                # 在图像上添加 FPS 文本
                # cv2.putText(image, f"{fps:.2f} FPS", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

        ret, buffer = cv2.imencode('.jpg', image)  # 编码为 jpg 格式
        frame_byte = buffer.tobytes()  # 转换为 bytes 类型
        return frame_byte

# 生成视频流的帧
def gen_frames(video_source):
    video_stream = VideoStream(video_source)  # 从视频文件获取视频流
    while True:
        frame = video_stream.get_frame()  # 获取视频帧
        if frame is None:
            # video_stream.__del__()  # 释放视频流
            break
        yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n'
               + frame + b'\r\n')  # 生成视频流的帧


@app.route('/video_feed')
def video_feed():
    video_source = request.args.get('video_source', 'camera')  # 从网页获取视频源

    # 通过将一帧帧的图像返回,就达到了看视频的目的。multipart/x-mixed-replace是单次的http请求-响应模式,如果网络中断,会导致视频流异常终止,必须重新连接才能恢复
    return Response(gen_frames(video_source), mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/')
def index_camera():  # 实时视频监控
    # <img src="{{ url_for('video_feed', video_source='camera') }}">
    return render_template('index4.html')

@app.route('/vidfile')
def index_vidfile():  # 播放视频文件
    # <img src="{{ url_for('video_feed', video_source='vedio_01.mp4') }}">
    return render_template('index5.html')

if __name__ == '__main__':
    # 启动一个本地开发服务器,激活该网页
    print("URL: http://127.0.0.1:5000")
    app.run(host='0.0.0.0', port=5000, debug=True, threaded=True)  # 绑定 IP 地址和端口号



6、视频流的网页模板

视频流的网页模板index4.html和index5.html位于templates文件夹,内容与cvFlask09项目完全相同。

网页index4.html位于templates文件夹,具体内容如下。

<!DOCTYPE html>
<html>
  <head>
    <title>Video Streaming Demonstration</title>
  </head>
  <body>
    <h2  align="center">OpenCV+Flask 例程:实时视频监控</h2>
    <div style="text-align:center; padding-top:inherit">
      <img src="{{ url_for('video_feed', video_source='camera') }}" width="600"; height="360">
    </div>
  </body>
</html>

网页index5.html位于templates文件夹,具体内容如下。

<!DOCTYPE html>
<html>
  <head>
    <title>Video Streaming Demonstration</title>
  </head>
  <body>
    <h2  align="center">OpenCV+Flask 例程:播放视频文件</h2>
    <div style="text-align:center; padding-top:inherit">
      <img src="{{ url_for('video_feed', video_source='vedio_01.mp4') }}" width="600"; height="360">
    </div>
  </body>
</html>

7、Flask 视频监控目标检测程序运行

进入cvFlask10项目的根目录,运行程序cvFlask10.py,启动流媒体服务器。

在局域网内设备(包括移动手机)的浏览器打开http://192.168.3.249:5000就可以播放实时视频监控画面。

【OpenCV DNN】Flask 视频监控目标检测教程 10

进一步地,我们添加两个控制按钮“Start”和“Stop”,用来控制开始和停止播放视频流。
在 Flask 应用中添加控制按钮需要修改前端和后端代码。前端需要添加按钮以及发送请求的 JavaScript 代码,后端则需要添加处理这些请求的路由。
我们在前端添加 “start” 和 “stop” 按钮,这两个按钮在被点击时会发送请求到 “/start” 和 “/stop” 路由。


【本节完】


版权声明:
欢迎关注『OpenCV DNN @ Youcans』系列
youcans@xupt 原创作品,转载必须标注原文链接:
【OpenCV DNN】Flask 视频监控目标检测教程 10
(https://blog.csdn.net/youcans/article/details/131365824)
Copyright 2023 youcans, XUPT
Crated:2023-06-24文章来源地址https://www.toymoban.com/news/detail-499154.html


到了这里,关于【OpenCV DNN】Flask 视频监控目标检测教程 10的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【OpenCV DNN】Flask 视频监控目标检测教程 07

    欢迎关注『OpenCV DNN @ Youcans』系列,持续更新中 本系列从零开始,详细讲解使用 Flask 框架构建 OpenCV DNN 模型的 Web 应用程序。 本节介绍使用Flask框架构建一个视频流服务器,通过OpenCV捕获摄像头的实时画面,使用人脸检测级联分类器进行人脸识别,并在视频图像中标记检测到

    2024年02月13日
    浏览(41)
  • 【OpenCV DNN】Flask 视频监控目标检测教程 06

    欢迎关注『OpenCV DNN @ Youcans』系列,持续更新中 本系列从零开始,详细讲解使用 Flask 框架构建 OpenCV DNN 模型的 Web 应用程序。 本节介绍用 Flask 构建流媒体服务器,通过OpenCV捕获摄像头的实时画面,向服务器发送请求可以播放实时的视频流。也可以播放本地视频文件。 本例程

    2024年02月07日
    浏览(67)
  • 【OpenCV DNN】Flask 视频监控目标检测教程 04

    欢迎关注『OpenCV DNN @ Youcans』系列,持续更新中 本系列从零开始,详细讲解使用 Flask 框架构建 OpenCV DNN 模型的 Web 应用程序。 本节介绍用Flask构建流媒体服务器,向服务器发送请求可以获取模拟视频源产生的视频图像。 我们的第四个例程,使用Flask框架构建一个视频流服务器

    2024年02月06日
    浏览(49)
  • 【OpenCV DNN】Flask 视频监控目标检测教程 01

    欢迎关注『OpenCV DNN @ Youcans』系列,持续更新中 【OpenCV DNN】Flask 视频监控目标检测教程 01 本系列从零开始,详细讲解使用 Flask 框架构建 OpenCV DNN 模型的 Web 应用程序。 将OpenCV DNN模型部署到Web端,不需要安装任何依赖,只需要访问Web地址就可以访问和运行应用程序。 面向P

    2024年02月07日
    浏览(110)
  • 基于视频技术与AI检测算法的体育场馆远程视频智能化监控方案

    一、方案背景 近年来,随着居民体育运动意识的增强,体育场馆成为居民体育锻炼的重要场所。但使用场馆内的器材时,可能发生受伤意外,甚至牵扯责任赔偿纠纷问题。同时,物品丢失、人力巡逻成本问题突出,体育场馆在给居民提供运动场地的同时,还需特别关注场馆内

    2024年02月07日
    浏览(57)
  • opencv系列(1)--使用opencv和Qt6做一个视频监控器人脸识别

    这个程序是自己的下班之后,看看那个坏东西想来偷看我的电脑。我就随手做的一个程序。 1.能都显示摄像头的内容。 2.如果有人进入摄像头。 3.利用opencv的模型识别人脸,识别到了就保存到自己的电脑里面。 4.并把他的照片显示到界面上一段时间,告诉他,偷窥有罪。 5.程

    2024年02月11日
    浏览(34)
  • 安防监控视频AI智能分析网关V4离岗检测算法配置步骤来啦

    我们的AI边缘计算网关硬件 —— 智能分析网关目前有5个版本:V1、V2、V3、V4、V5,每个版本都能实现对监控视频的智能识别和分析,支持抓拍、记录、告警等,每个版本在算法模型及性能配置上略有不同。硬件可实现的 AI 检测包括:人脸结构化数据、车辆结构化数据、场景检

    2024年02月07日
    浏览(46)
  • opencv dnn模块 示例(19) 目标检测 object_detection 之 yolox

    YOLOX是旷视科技在2021年发表,对标YOLO v5。YOLOX中引入了当年的黑科技主要有三点,decoupled head、anchor-free以及advanced label assigning strategy(SimOTA)。YOLOX的性能如何呢,可以参考原论文图一如下图所示。YOLOX比当年的YOLO v5略好一点,并且利用YOLOX获得当年的Streaming Perception Challenge第一

    2024年02月06日
    浏览(49)
  • 树莓派利用python-opencv使用CSI摄像头调用监控视频

    目录 一、安装python-opencv。 二、使用工具Xshell7和MobaXterm 三、连接并打开CSI摄像头 3.1连线如图所示: 3.2打开摄像头 四、编写摄像头代码调用摄像头         一定要选择配置好的安装python-opencv,不要去配置安装,然后还cmake编译,没有必要基本上安装过程都会报2-3个错误,还

    2023年04月17日
    浏览(55)
  • 【教程】视频汇聚/视频监控管理平台EasyCVR录像存储功能如何优化?具体步骤是什么?

    视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。视频监控系统EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警

    2024年02月07日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包