模型的构建: tf.keras.Model
和 tf.keras.layers
模型的损失函数: tf.keras.losses
模型的优化器: tf.keras.optimizer
模型的评估: tf.keras.metrics
文章来源:https://www.toymoban.com/news/detail-499254.html
模型(Model)与层(Layer)
Keras 有两个重要的概念: 模型(Model) 和 层(Layer) 。层将各种计算流程和变量进行了封装(例如基本的全连接层,CNN 的卷积层、池化层等),而模型则将各种层进行组织和连接,并封装成一个整体,描述了如何将输入数据通过各种层以及运算而得到输出文章来源地址https://www.toymoban.com/news/detail-499254.html
import tensorflow as tf
X = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
y = tf.constant([[10.0], [20.0]])
class Linear(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense = tf.keras.layers.Dense(
units=1,
activation=None,
kernel_initializer=tf.zeros
到了这里,关于tensorflow2 模型建立与训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!