K近邻算法(K-Nearest Neighbors, KNN)原理详解与应用

这篇具有很好参考价值的文章主要介绍了K近邻算法(K-Nearest Neighbors, KNN)原理详解与应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


K近邻算法(K-Nearest Neighbors, KNN)是一种常用的非参数化的监督学习算法,用于分类和回归任务。本文将深入解析KNN的原理,从距离度量到K值选择,帮助读者全面理解KNN的工作原理和应用。

1. KNN算法概述

KNN算法基于一个简单的思想:相似的样本具有相似的类别。它通过计算新样本与训练集中各个样本的距离,并选择最近邻的K个样本来进行分类或回归。

2. 距离度量

在KNN算法中,距离度量是判断样本之间相似性的重要指标。常用的距离度量方法有欧氏距离、曼哈顿距离和闵可夫斯基距离等。根据具体问题的特点和数据的属性,选择适当的距离度量方法非常重要。

3. K值选择

K值是KNN算法中的一个重要参数,它决定了用于分类或回归的邻居数量。选择合适的K值对于模型的性能至关重要。较小的K值会导致模型对噪声敏感,而较大的K值会导致模型过于保守。

4. 分类任务

在KNN算法中,分类任务是最常见的应用场景。当给定一个新样本时,KNN算法通过计算其与训练集样本的距离,并选取最近的K个邻居样本。然后,根据邻居样本的类别进行投票,将新样本归为票数最多的类别。

5. 回归任务

除了分类任务,KNN算法也可以应用于回归任务。在回归任务中,KNN算法计算新样本与训练集样本的距离,并选择最近的K个邻居样本。然后,根据邻居样本的数值进行加权平均,得到新样本的预测值。

6. KNN的优缺点

KNN算法的优点:

  • 简单易理解,无需训练阶段。
  • 能够处理多类别和多特征的问题。
  • 在样本分布较为均匀的情况下表现良好。

KNN算法的缺点:

  • 对于大规模数据集,计算样本之间的距离较为耗时。
  • 对于高维数据,距离计算容易受到维度灾难的影响。
  • 对于不平衡数据集,分类结果可能偏向于样本较多的类别。

7. KNN算法应用

from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN模型
model = KNeighborsClassifier(n_neighbors=3)

# 训练模型
model.fit(X_train, y_train)

# 预测结果
y_pred = model.predict(X_test)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

代码中,首先加载了一个经典的鸢尾花数据集(Iris),将数据集划分为训练集和测试集。然后创建一个KNN分类模型,并使用训练集进行训练。最后,使用测试集进行预测,并计算准确率来评估模型的性能。文章来源地址https://www.toymoban.com/news/detail-499279.html

到了这里,关于K近邻算法(K-Nearest Neighbors, KNN)原理详解与应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch:探索 k-nearest neighbor (kNN) 搜索

    由于新一代机器学习模型可以将各种内容表示为向量,包括文本、图像、事件等,人们对向量搜索的兴趣激增。 通常称为 “ 嵌入模型 (embedding models)”,这些强大的表示可以以超越其表面特征的方式捕获两段内容之间的相似性。 K 最近邻 (KNN) 搜索又名语义搜索是一种简单

    2024年02月08日
    浏览(40)
  • 算法笔记 近似最近邻查找(Approximate Nearest Neighbor Search,ANN)

    精准最近邻搜索中数据维度一般较低,所以会采用穷举搜索,即在数据库中依次计算其中样本与所查询数据之间的距离,抽取出所计算出来的距离最小的样本即为所要查找的最近邻。 当数据量非常大的时候,搜索效率急剧下降。 ——近似最近邻查找(Approximate Nearest Neighbor

    2024年02月09日
    浏览(40)
  • 四、分类算法 - KNN算法(K-近邻算法)

    目录 1、K-近邻算法 1.1 K-近邻算法原理 1.2 K - 近邻算法API 1.3 案例1:鸢尾花种类预测 1.3.1 数据集介绍 1.3.2 步骤 1.4 KNN 算法总结 sklearn转换器和估算器 KNN算法 模型选择和调优 朴素贝叶斯算法 决策树 随机森林 1.3.1 数据集介绍 1.3.2 步骤 获取数据 数据集划分 特征工程   - 标准

    2024年02月22日
    浏览(50)
  • 【机器学习实战】K- 近邻算法(KNN算法)

    K-近邻算法 ,又称为  KNN 算法 ,是数据挖掘技术中原理最简单的算法。 KNN  的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。

    2023年04月20日
    浏览(57)
  • 8_分类算法-k近邻算法(KNN)

    定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居

    2024年02月11日
    浏览(41)
  • 机器学习——K近邻(KNN)算法

    目录 一、knn算法概述 1.简单介绍 2.工作原理 3.knn算法中常用的距离指标 4.knn算法优势 5.knn算法一般流程 二、knn算法经典实例——海伦约会网站 三、关于天气和旅行适合度的例子 四、总结 K近邻算法(KNN)是一种用于分类和回归的统计方法。k-近邻算法采用测量不同特征值之

    2024年01月16日
    浏览(39)
  • 机器学习之——K近邻(KNN)算法

                    k-近邻算法(K-Nearest Neighbors,简称KNN)是一种用于分类和回归的统计方法。KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。                 k-近邻算法基于某种距离度量来找到输入样本在训练集中的k个最近邻居,并且根据这k个

    2024年04月10日
    浏览(40)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(43)
  • 机器学习之KNN(K近邻)算法

    KNN算法又叫做K近邻算法,是众多机器学习算法里面最基础入门的算法。KNN算法是最简单的分类算法之一,同时,它也是最常用的分类算法之一。KNN算法是有监督学习中的分类算法,它看起来和Kmeans相似(Kmeans是无监督学习算法),但却是有本质区别的。 KNN算法基于实例之间

    2024年02月08日
    浏览(35)
  • 【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 is_array() 可以 「检测」 变量是不是 「数组」 类型。 语法 参数 $var :需要检

    2024年02月16日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包