基于k6和python进行自动化性能测试

这篇具有很好参考价值的文章主要介绍了基于k6和python进行自动化性能测试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

摘要:在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

本文分享自华为云社区《基于k6和python进行自动化性能测试》,作者: 风做了云的梦。

当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些bug。在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

k6是一个开源工具,基于JavaScript可以编写k6的测试脚本,测试Web应用程序以及API的性能,支持HTTP等多种协议,可以很好地模拟各种高负载场景,充分验证程序稳定性和性能。k6支持Linux、MacOS等多个平台,通过k6官网根据提示即可在各个平台快速安装k6,终端输入k6 version出现如下显示说明安装成功。

以下是一个简单的k6测试脚本,通过k6的HTTP API模拟Get请求,并且休眠一秒钟:K

import http from 'k6/http';
import { sleep } from 'k6';
export default function () {
 http.get('https://test-api.com');
 sleep(1);
}

通过执行下面这行代码,运行脚本,即可对服务完成测试。

k6 run test-script.js

k6提供了丰富的功能,以下是k6常用的一些API,具体可以参考官网文档介绍:

- http.get(url, [options]):发送GET请求。
- http.post(url, body, [options]):发送POST请求。
- check(res, checks):检查响应是否符合预期。
- group(name, func):将一组请求分组并统计性能指标。
- sleep(duration):休眠指定的时间。

k6的测试结果包括以下一些指标,可以根据这些指标,更好的优化程序。

- VUs:虚拟用户的数量。
- Iterations:迭代次数。
- RPS:每秒钟的请求数。
- Duration:测试持续时间。
- Data Sent/Received:发送和接收的数据量。
- Checks:检查的数量。
- Status codes:响应状态码的数量。
- Errors:错误的数量。
- Latency distribution:延迟分布。

通过Python和k6你可以更加高效的完成符合自己要求的自动化测试,Python可以提供非常多的工具库,用来收集处理k6返回的结果。 我们可以编写以下k6测试脚本,并且通过Python去执行它,相关注释我已经标注出来,在handleSummary函数中,我们可以通过metrics来获取各种测试信息,具体如代码所示,可以参考官网关于metrics的介绍,同时自定义环境变量的使用也十分方便,可以参考代码中的使用方式。

import http from 'k6/http';
import { check, sleep} from 'k6';
import {Rate} from 'k6/metrics';
export default function() {
    #post请求所需要的body体
 let requestBody = {
 "xxx":[
 "xxxxx"
        ],
 "xxxx": __ENV.MyVar # MyVar为自定义的环境变量,可以通过__ENV调用,在执行脚本时可直接通过MyVar=xxx传值
    };
    #url
 const url = 'http://example.com';
 const payload = JSON.stringify(requestBody);
 const params = {
    headers: {
 'Content-Type': 'application/json',
        },
    timeout: '100s' #每个请求的超时时间
    };
 let res = http.post(url, payload, params);
    #检测结果是否是200OK
 check(res, { 'status is 200': (r) => r.status === 200 });
}
export function handleSummary(data) {
        #通过data.metrics中的字段可以获取你想要的一些信息,例如每个请求的持续时间和吞吐量
 const time = `${data.metrics.http_req_duration.values.avg.toFixed(3)}`;
 const rps = `${data.metrics.http_reqs.values.rate.toFixed(3)}`;
 const res = `${time} ${rps}`; 
        console.log(res); # 利用console.log可以将内容打印到控制台
 return {stdout : res}; #输出到标准输出
}

如下是一个Python代码示例,相关代码已经注释,通过Python中的subprocess模块执行k6脚本,并且捕获k6脚本的输出,通过pandas库进行整理输出到excel中。还可以通过argparse库解析命令行参数传入k6脚本中,更加灵活,高效。

# -*- coding: utf-8 -*-
import subprocess
from alive_progress import alive_bar # 非常丰富的进度条工具库
from tqdm import tqdm # 进度条工具库
import pandas as pd # 可以用来处理文本excel,csv等
from collections import OrderedDict
import argparse # 用来解析命令行参数 
import time
print('测试时间 : ', time.strftime('%b %d %Y %H:%M:%S', time.gmtime(time.time())))
print("************开始测试啦! 祈祷不出错!**************")
# 需要测试的测试语句集合
test_examples = [
 "aaaaaaa",
 "bbbbbbb",
 "ccccccc"
]
dataMap = {'test': test_examples}
parser = argparse.ArgumentParser()
parser.add_argument("-d", default="60s", help="duration time", dest="duration_time") #解析命令行参数,控制测试时间
args = parser.parse_args()
print("每条语句测试时间 : ", args.duration_time)
vus = ['10', '20', '30', '40'] # 并发数集合 ,分别测试并发数为10,20,30,40的场景
cols_name = ['1-avg/ms', '1-rps/s', '10-avg/ms', '10-rps/s','20-avg/ms', '20-rps/s','50-avg/ms', '50-rps/s'] # excel的列名
# 循环测试,可以将多个需要测试的语句集合放入到dataMap中
for (name, data) in dataMap.items(): 
 print("当前测试的项目为 :", name)
        res = OrderedDict()
        res['test_examples'] = []
 for n in cols_name:
                res[n] = []
        df = pd.DataFrame(res)
 excel_name = name + ".xlsx"
 df.to_excel(excel_name, index=False)
 for query in data:
 print("当前测试语句为 :", query)
                origin = pd.read_excel(excel_name)
 with alive_bar(len(vus)) as bar:
 temp_dict = {}
 temp_dict['test_examples'] = query
 for vu in vus:
 keyRps = vu + '-rps/s'
 keyTime = vu + '-avg/ms'
 MyVar='MyVar=' + query
 #通过Popen执行k6脚本,并且捕获它的标准输出
                                process = subprocess.Popen(['k6', 'run', '--quiet', 'script.js', '--env', MyVar, '--vus', vu, '--duration', args.duration_time], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
                                result = process.stdout.read()
                                temp = result.split()
 temp_dict[keyTime] = temp[0].decode();
 temp_dict[keyRps] = temp[1].decode();
 print("并发:", vu, temp[0].decode(), temp[1].decode())
 bar()
 #将脚本输出写到excel
 save_data = origin.append(temp_dict, ignore_index=True)
 save_data.to_excel(excel_name, index=False)

执行此Python脚本,可以得到类似以下输出:

1、k6官网文档链接:https://k6.io/docs/

2、k6安装链接:https://k6.io/docs/get-started/installation/

号外

7月7日,华为开发者大会2023 ( Cloud )将拉开帷幕,并将在国内30多个城市、海外10多个国家开设分会场,诚邀您参加这场不容错过的年度开发者盛会,让我们一起开启探索之旅!

我们将携手开发者、客户、合作伙伴,为您呈现华为云系列产品服务与丰富的创新实践,并与您探讨AI、大数据、数据库、PaaS、aPaaS、媒体服务、云原生、安全、物联网、区块链、开源等技术话题,展开全面深入的交流。

大会将汇聚全球科学家、行业领袖、技术专家、社区大咖,开设200多场开发者专题活动,为全球开发者提供面对面交流与合作的机会,共同探讨技术创新和业务发展。

大会官网:https://developer.huaweicloud.com/HDC.Cloud2023.html

参会购票:https://www.vmall.com/product/10086352254099.html?cid= 211761

点击参与开发者社区活动,观赏技术大咖秀、玩转技术梦工厂,有机会赢取4000元开发者礼包!

欢迎关注“华为云开发者联盟”公众号,获取大会议程、精彩活动和前沿干货。

 

点击关注,第一时间了解华为云新鲜技术~文章来源地址https://www.toymoban.com/news/detail-499330.html

到了这里,关于基于k6和python进行自动化性能测试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python针对电脑分辨率进行UI自动化测试样式

    2024软件测试面试刷题,这个小程序(永久刷题),靠它快速找到工作了!(刷题APP的天花板)_软件测试刷题小程序-CSDN博客文章浏览阅读3k次,点赞86次,收藏13次。你知不知道有这么一个软件测试面试的刷题小程序。里面包含了面试常问的软件测试基础题,web自动化测试、

    2024年04月11日
    浏览(45)
  • 从零开始学习:如何使用Selenium和Python进行自动化测试?

    安装selenium 打开命令控制符输入:pip install -U selenium 火狐浏览器安装firebug:www.firebug.com,调试所有网站语言,调试功能 Selenium IDE 是嵌入到Firefox 浏览器中的一个插件,实现简单的浏览器操 作的录制与回放功能,IDE 录制的脚本可以可以转换成多种语言,从而帮助我们快速的开

    2024年04月23日
    浏览(76)
  • 【自动化测试】基于Selenium + Python的web自动化框架

    Selenium是一个基于浏览器的自动化工具,她提供了一种跨平台、跨浏览器的端到端的web自动化解决方案。Selenium主要包括三部分:Selenium IDE、Selenium WebDriver 和Selenium Grid:  1、Selenium IDE:Firefox的一个扩展,它可以进行录制回放,并可以把录制的操作以多种语言(例如java,p

    2024年02月07日
    浏览(74)
  • 基于 python 的接口自动化测试,让你轻松掌握接口自动化

    目录 目录 一、简介                ​编辑二、引言 三、环境准备 四、测试接口准备 接口信息 五、编写接口测试 六、优化 封装接口调用   本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势; 然后简单讨论了一下接口测试框架的要点; 最后介绍了一下

    2023年04月19日
    浏览(71)
  • 基于python实现Web自动化测试(selenium)、API自动化测试(requests)&附学习视频

    另一篇文章 :自动化测试框架(pytest)附学习视频 学习视频,学习文档-白月黑羽 说明: 1紧跟着写的不加/,不加空格-表示同一级别信息,加空格表示后代 2.css定位tag,id,class时分别有不同的标识,其他属性都要加[]进行搜索, Xpath所有属性都要都加【】,tag不用 3. css在使用ta

    2024年02月03日
    浏览(101)
  • 基于Selenium+Python的自动化测试

    (1)了解Selenium+Python环境搭建及配置,能够了解基于Selenium自动化测试的基本原理; (2)能够理解基于Selenium自动登录网页的过程,对软件自动化测试过程的原理有一定的理解,为今后从事web自动化测试奠定基础。 实验环境 : (1)window10操作系统; (2)python开发环境、

    2024年02月03日
    浏览(38)
  • (基于python)简单实现接口自动化测试

    本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势,然后简单讨论了一下接口测试框架的要点,最后介绍了一下我们目前正在使用的接口测试框架pithy。期望读者可以通过本文对接口自动化测试有一个大致的了解。 为什么要做接口自动化测试? 在当前互联网

    2024年02月08日
    浏览(44)
  • 简单实现接口自动化测试(基于python)

    本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势,然后简单讨论了一下接口测试框架的要点,最后介绍了一下我们目前正在使用的接口测试框架pithy。期望读者可以通过本文对接口自动化测试有一个大致的了解。 为什么要做接口自动化测试? 在当前互联网

    2024年02月13日
    浏览(44)
  • 基于Python 简易实现接口测试自动化

    目录 实现思路 统筹脚本 请求封装  日志封装 结果比对 结果邮件 用例获取及数据格式化 请求url转换 测试用例excel结构 测试报告 邮件接收结果 资料获取方法 使用excel管理用例用例信息,requests模块发送http请求,实现了记录日志,邮件发送测试报告的功能 目录结构如下: 下

    2024年02月13日
    浏览(41)
  • 基于Python简单实现接口自动化测试(详解)

    本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势,然后简单讨论了一下接口测试框架的要点,最后介绍了一下我们目前正在使用的接口测试框架pithy。期望读者可以通过本文对接口自动化测试有一个大致的了解。 为什么要做接口自动化测试? 在当前互联网

    2024年01月20日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包