typeScript(泛型篇)

这篇具有很好参考价值的文章主要介绍了typeScript(泛型篇)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍

软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性。 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能。

在像C#和Java这样的语言中,可以使用泛型来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。

泛型之Hello World

下面来创建第一个使用泛型的例子:identity函数。 这个函数会返回任何传入它的值。 你可以把这个函数当成是 echo命令。

不用泛型的话,这个函数可能是下面这样:

function identity(arg: number): number {
    return arg;
}
// 或者,我们使用any类型来定义函数:
function identity(arg: any): any {
    return arg;
}

使用any类型会导致这个函数可以接收任何类型的arg参数,这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。

因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。 这里,我们使用了 类型变量,它是一种特殊的变量,只用于表示类型而不是值。

function identity<T>(arg: T): T {
    return arg;
}

我们给identity添加了类型变量T。 T帮助我们捕获用户传入的类型(比如:number),之后我们就可以使用这个类型。 之后我们再次使用了 T当做返回值类型。现在我们可以知道参数类型与返回值类型是相同的了。 这允许我们跟踪函数里使用的类型的信息。

我们把这个版本的identity函数叫做泛型,因为它可以适用于多个类型。 不同于使用 any,它不会丢失信息,像第一个例子那像保持准确性,传入数值类型并返回数值类型。

我们定义了泛型函数后,可以用两种方法使用。 第一种是,传入所有的参数,包含类型参数:

let output = identity<string>("myString");  // type of output will be 'string'

这里我们明确的指定了Tstring类型,并做为一个参数传给函数,使用了<>括起来而不是()

第二种方法更普遍。利用了类型推论 -- 即编译器会根据传入的参数自动地帮助我们确定T的类型:

let output = identity("myString");  // type of output will be 'string'

注意我们没必要使用尖括号(<>)来明确地传入类型;编译器可以查看myString的值,然后把T设置为它的类型。 类型推论帮助我们保持代码精简和高可读性。如果编译器不能够自动地推断出类型的话,只能像上面那样明确的传入T的类型,在一些复杂的情况下,这是可能出现的。

使用泛型变量

使用泛型创建像identity这样的泛型函数时,编译器要求你在函数体必须正确的使用这个通用的类型。 换句话说,你必须把这些参数当做是任意或所有类型。

看下之前identity例子:

function identity<T>(arg: T): T {
    return arg;
}

如果我们想同时打印出arg的长度。 我们很可能会这样做:

function loggingIdentity<T>(arg: T): T {
    console.log(arg.length);  // Error: T doesn't have .length
    return arg;
}

如果这么做,编译器会报错说我们使用了arg.length属性,但是没有地方指明arg具有这个属性。 记住,这些类型变量代表的是任意类型,所以使用这个函数的人可能传入的是个数字,而数字是没有 .length属性的。

现在假设我们想操作T类型的数组而不直接是T。由于我们操作的是数组,所以.length属性是应该存在的。 我们可以像创建其它数组一样创建这个数组:

function loggingIdentity<T>(arg: T[]): T[] {
    console.log(arg.length);  // Array has a .length, so no more error
    return arg;
}

你可以这样理解loggingIdentity的类型:泛型函数loggingIdentity,接收类型参数T和参数arg,它是个元素类型是T的数组,并返回元素类型是T的数组。 如果我们传入数字数组,将返回一个数字数组,因为此时 T的的类型为number。 这可以让我们把泛型变量T当做类型的一部分使用,而不是整个类型,增加了灵活性。

我们也可以这样实现上面的例子:

function loggingIdentity<T>(arg: Array<T>): Array<T> {
    console.log(arg.length);  // Array has a .length, so no more error
    return arg;
}

使用过其它语言的话,你可能对这种语法已经很熟悉了。 在下一节,会介绍如何创建自定义泛型像 Array<T>一样。

泛型类型

上一节,我们创建了identity通用函数,可以适用于不同的类型。 在这节,我们研究一下函数本身的类型,以及如何创建泛型接口。

泛型函数的类型与非泛型函数的类型没什么不同,只是有一个类型参数在最前面,像函数声明一样:

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: <T>(arg: T) => T = identity;

我们也可以使用不同的泛型参数名,只要在数量上和使用方式上能对应上就可以。

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: <U>(arg: U) => U = identity;

我们还可以使用带有调用签名的对象字面量来定义泛型函数:

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: {<T>(arg: T): T} = identity;

这引导我们去写第一个泛型接口了。 我们把上面例子里的对象字面量拿出来做为一个接口:

interface GenericIdentityFn {
    <T>(arg: T): T;
}

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: GenericIdentityFn = identity;

一个相似的例子,我们可能想把泛型参数当作整个接口的一个参数。 这样我们就能清楚的知道使用的具体是哪个泛型类型(比如: Dictionary<string>而不只是Dictionary)。 这样接口里的其它成员也能知道这个参数的类型了。

interface GenericIdentityFn<T> {
    (arg: T): T;
}

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: GenericIdentityFn<number> = identity;

注意,我们的示例做了少许改动。 不再描述泛型函数,而是把非泛型函数签名作为泛型类型一部分。 当我们使用 GenericIdentityFn的时候,还得传入一个类型参数来指定泛型类型(这里是:number),锁定了之后代码里使用的类型。 对于描述哪部分类型属于泛型部分来说,理解何时把参数放在调用签名里和何时放在接口上是很有帮助的。

除了泛型接口,我们还可以创建泛型类。 注意,无法创建泛型枚举和泛型命名空间。

泛型类

泛型类看上去与泛型接口差不多。 泛型类使用( <>)括起泛型类型,跟在类名后面。

class GenericNumber<T> {
    zeroValue: T;
    add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function(x, y) { return x + y; };

GenericNumber类的使用是十分直观的,并且你可能已经注意到了,没有什么去限制它只能使用number类型。 也可以使用字符串或其它更复杂的类型。

let stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = "";
stringNumeric.add = function(x, y) { return x + y; };

console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));

与接口一样,直接把泛型类型放在类后面,可以帮助我们确认类的所有属性都在使用相同的类型。

我们在类那节说过,类有两部分:静态部分和实例部分。 泛型类指的是实例部分的类型,所以类的静态属性不能使用这个泛型类型。

泛型约束

你应该会记得之前的一个例子,我们有时候想操作某类型的一组值,并且我们知道这组值具有什么样的属性。 在 loggingIdentity例子中,我们想访问arglength属性,但是编译器并不能证明每种类型都有length属性,所以就报错了。

function loggingIdentity<T>(arg: T): T {
    console.log(arg.length);  // Error: T doesn't have .length
    return arg;
}

相比于操作any所有类型,我们想要限制函数去处理任意带有.length属性的所有类型。 只要传入的类型有这个属性,我们就允许,就是说至少包含这一属性。 为此,我们需要列出对于T的约束要求。

为此,我们定义一个接口来描述约束条件。 创建一个包含 .length属性的接口,使用这个接口和extends关键字来实现约束:

interface Lengthwise {
    length: number;
}

function loggingIdentity<T extends Lengthwise>(arg: T): T {
    console.log(arg.length);  // Now we know it has a .length property, so no more error
    return arg;
}

现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:

loggingIdentity(3);  // Error, number doesn't have a .length property

我们需要传入符合约束类型的值,必须包含必须的属性:

loggingIdentity({length: 10, value: 3});

在泛型约束中使用类型参数

你可以声明一个类型参数,且它被另一个类型参数所约束。 比如,现在我们想要用属性名从对象里获取这个属性。 并且我们想要确保这个属性存在于对象 obj上,因此我们需要在这两个类型之间使用约束。

    function getProperty<T, K extends keyof T>(obj: T, key: K) {
        return obj[key];
    }
    
    let x = { a: 1, b: 2, c: 3, d: 4 };
    
    getProperty(x, "a"); // okay
    // getProperty(x, "m"); // error: Argument of type 'm' isn't assignable to 'a' | 'b' | 'c' | 'd'.

在泛型里使用类类型

在TypeScript使用泛型创建工厂函数时,需要引用构造函数的类类型。比如,

function create<T>(c: {new(): T; }): T {
    return new c();
}

一个更高级的例子,使用原型属性推断并约束构造函数与类实例的关系。

class BeeKeeper {
    hasMask: boolean;
}

class ZooKeeper {
    nametag: string;
}

class Animal {
    numLegs: number;
}

class Bee extends Animal {
    keeper: BeeKeeper;
}

class Lion extends Animal {
    keeper: ZooKeeper;
}

function createInstance<A extends Animal>(c: new () => A): A {
    return new c();
}

createInstance(Lion).keeper.nametag;  // typechecks!
createInstance(Bee).keeper.hasMask;   // typechecks!

来源于泛型 · TypeScript中文网 · TypeScript——JavaScript的超集

下一篇:typeScript(枚举篇)文章来源地址https://www.toymoban.com/news/detail-499593.html

到了这里,关于typeScript(泛型篇)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 介绍第一位 AI 软件工程师 Devin

    认识 Devin,世界上第一位完全自主的 AI 软件工程师。 ‍ Devin 是一位孜孜不倦、技术娴熟的队友,同样愿意与您一起构建或独立完成任务供您查看。 有了 Devin,工程师可以专注于更有趣的问题,工程团队可以为更雄心勃勃的目标而奋斗。  Devin的能力 随着我们在长期推理和规

    2024年04月11日
    浏览(65)
  • 【软件工程】软件工程期末考试试卷

    瀑布模型把软件生命周期划分为八个阶段 :问题的定义、可行性研究、软件需求分析、系统总体设计、详细设计、编码、测试和运行、维护。八个阶段又可归纳为三个大的阶段: 计划阶段、开发阶段和( C) 。   A、详细计划 B、可行性分析  C 、 运行阶段  D、 测试与排错

    2024年02月09日
    浏览(50)
  • 【软件工程】《软件工程》期末复习提纲

    《软件工程》期末复习提纲 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 第十一章 第十二章 第十三章 第十四章 小题参考 大题参考 1.在下列选项中,( )不是软件的特征。 A.系统性与复制性         B.可靠性与一致性 C.抽象性与智能性  

    2024年01月17日
    浏览(46)
  • 【软件工程】软件工程习题及答案

    软件工程是一种系统化、规范化的方法论,用于开发、维护和管理软件项目。它涵盖了软件开发的各个方面,包括需求分析、设计、编码、测试、部署、维护和项目管理等。 软件工程通过应用科学原理、工程技术和管理方法,以及适应性的实践,旨在提高软件开发的效率、质

    2024年02月09日
    浏览(67)
  • 【软件工程】软件工程期末考试复习题

    软件工程期末考试试题及参考答案 一、单向选择题 1、软件的发展经历了(D)个发展阶段。 一 二 三 四 2、需求分析的任务不包括(B)。 问题分析 系统设计 需求描述 需求评审。 3、一个软件的宽度是指其控制的(C)。 模块数 层数 跨度 厚度 4、当模块中包含复杂的条件组

    2024年02月10日
    浏览(49)
  • 【软件工程】山东大学软件工程复习提纲

    涵盖所有考点,复习绝对高效,点赞+留邮箱获取pdf版本 本提纲可以完全摘抄,考试命中率100%,先上考试带的A4纸: 1. 软件工程三要素 方法:为软件开发提供了“如何做 ”的技术,如项目计划与估算、软件系统需求分析、数据结构、系统总体结构的设计等; 工具:为软件工

    2024年02月13日
    浏览(39)
  • 【软件工程】为什么要选择软件工程专业?

    个人主页:【😊个人主页】 软件工程是一门研究用工程化方法构建和维护有效、实用和高质量的软件的学科。就当下主流趋势来看,其有着无限的未来。接下来我将以六个方面来谈谈我对软件工程专业的看法: 软件工程是一门研究用工程化方法构建和维护有效、实用和高质

    2023年04月19日
    浏览(47)
  • 【软件工程】自动化测试保证卓越软件工程能力(3)

    对照目标系统,如下:  给出自动化测试平台目标如下: Case level Case brief Report send to OVERALL User 1 - Process - Customer 1 Boss Level 1 User 1 - Process - Customer 1 User 1 - Process - Customer  2 User  2  - Process - Customer 1 ... Manager, Some users, Developers, Testers Level 2 User 1 - Igeress - Process - Router - Sender 1

    2024年02月04日
    浏览(57)
  • 经典软件工程复兴?大模型驱动的软件工程实践标准化

    简单来说,本文探讨了大模型驱动的软件工程实践标准化,以及如何将需求和设计规范化为 DSL 格式。通过这种方式,可以让 AI 更自动化、高效地编写代码。 随着大语言模型在软件开发中的应用越来越广泛,传统的软件工程实践开始被重新关注和提及。在诸如于编写清晰的文

    2024年02月12日
    浏览(38)
  • 软件与软件工程

    软件的概念以及特点: 软件是计算机系统中不可或缺的一部分,与硬件共同构成特定的系统功能。 人们通常把各种不同功能的程序,包括系统程序、应用程序、用户自己编写的程序等称为软件 软件的概念: 软件不仅包括程序,还包括程序的处理对象——数据,以及与程序开

    2024年02月11日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包