4.1 集成运算放大电路概述

这篇具有很好参考价值的文章主要介绍了4.1 集成运算放大电路概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

集成电路以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分…)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性能低价位,在大多数情况下,已经取代了分立元件放大电路。

一、集成运放电路的结构特点

我们知道,在集成电路中,相邻元器件的参数具有良好的一致性;纵向晶体管的 β \beta β 大,横向晶体管的耐压高;电阻的阻值和电容的容量均有一定的限制;便于制造互补式 MOS 电路等特点。这些特点使得集成放大电路与分立元件放大电路在结构上有较大的差别。观察它们的电路图可以发现,分立元件放大电路除放大管外,其余元件多为电阻、电容、电感等;而集成放大电路以晶体管和场效应管为主要元件,电阻与电容的数量很少。归纳集成运放的特点如下:
(1)因为硅片上不能制作大电容,所以集成运放均采用直接耦合方式
(2)因为相邻元件具有良好的对称性,而且受环境温度和干扰等影响后的变化也相同,所以集成运放中大量采用各种差分放大电路(作输入级)和恒流源电路(作偏置电路或有源负载)。
(3)因为制作不同形式的集成电路,只是所用掩膜不同,增加元器件并不增加制造工序,所以集成运放允许采用复杂的电路形式,以达到提高各方面性能的目的。
(4)因为硅片上不宜制作高阻值电阻,所以集成运放中常用有源元件(晶体管或场效应管)取代电阻。
(5)集成晶体管和场效应管因制作工艺不同,性能上有较大差异,所以在集成运放中常采用复合形式,以得到各方面性能俱佳的效果。

二、集成运放电路的组成及其各部分的作用

集成运放电路由输入级、中间级、输出级和偏置电路等四部分组成,如图4.1.1所示。他有两个输入端,一个输出端,图中所标 u P u_P uP u N u_N uN u O u_O uO 均以“地”为公共端。4.1 集成运算放大电路概述

1、输入级

输入级又称前置级,它往往是一个双端输入的高性能差分放大电路。一般要求其输入电阻高,差模放大倍数大,抑制共模信号的能力强,静态电流小。输入级的好坏直接影响着集成运放的大多数性能参数,因此,在几代产品的更新过程中,输入级的变化最大。

2、中间级

中间级是整个放大电路的主放大器,其作用是使集成运放具有较强的放大能力,多采用共射(或共源)放大电路。而且为了提高电压放大倍数,经常采用复合管作放大管,以恒流源作集电极负载。其电压放大倍数可达千倍以上。

3、输出级

输出级应具有输出电压线性范围宽、输出电阻小(即带负载能力强)、非线性失真小等特点。集成运放的输出级多采用互补输出电路。

4、偏置电路

偏置电路用于设置集成运放各级放大电路的静态工作点。与分立元件不同,集成运放采用电流源电路为各级提供合适的集电极(或发射极、漏极)静态工作电流,从而确定了合适的静态工作点。

三、集成运放的电压传输特性

集成运放有同相输入端和反相输入端,这里的“同相”和“反相”是指运放的输入电压与输出电压之间的相位关系,其符号如图4.1.2(a)所示。从外部看,可以认为集成运放是一个双端输入、单端输出,具有高差模放大倍数、高输入电阻、低输出电阻、能较好地抑制温漂的差分放大电路。4.1 集成运算放大电路概述集成运放的输出电压 u O u_O uO 与输入电压(即同相输入端与反向输入端之间的电位差)( u P − u N u_P-u_N uPuN)之间的关系曲线称为电压传输特性,即 u O = f ( u P − u N ) ( 4.1.1 ) u_O=f(u_P-u_N)\kern 60pt(4.1.1) uO=f(uPuN)(4.1.1)对于正、负两路电源供电的集成运放,电压传输特性如图4.1.2(b)所示。从图示曲线可以看出,集成运放有线性放大区域(称为线性区)和饱和区域(称为非线性区)两部分。在线性区,曲线的斜率为电压放大倍数;在非线性区,输出电压只有两种可能的情况, + U O M +U_{OM} +UOM − U O M -U_{OM} UOM
由于集成运放放大的是差模信号,且没有通过外电路引入反馈,故称其电压放大倍数为差模开环放大倍数,记作 A o d A_{od} Aod,因而当集成运放工作在线性区 u O = A o d ( u P − u N ) ( 4.1.2 ) u_O=A_{od}(u_P-u_N)\kern 55pt(4.1.2) uO=Aod(uPuN)(4.1.2)通常 A o d A_{od} Aod 非常高,可达几十万倍,因此集成运放电压传输特性中的线性区非常之窄。如果输出电压的最大值 ± U O M = ± 14   V ±U_{OM}=±14\,\textrm V ±UOM=±14V A o d = 5 × 1 0 5 A_{od}=5\times10^5 Aod=5×105,那么只有当 ∣ u P − u N ∣ < 28   μV |u_P-u_N|<28\,\textrm{μV} uPuN<28μV 时,电路才工作在线性区。换言之,若 ∣ u P − u N ∣ > 28   μV |u_P-u_N|>28\,\textrm {μV} uPuN>28μV,则集成运放进入非线性区,因而输出电压 u O u_O uO 不是 + 14   V +14\,\textrm V +14V,就是 − 14   V -14\,\textrm V 14V文章来源地址https://www.toymoban.com/news/detail-499657.html

到了这里,关于4.1 集成运算放大电路概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Ubuntu18.04虚拟机EDA环境,支持模拟集成电路、数字集成电路、数模混合设计全流程,包含工艺库

    搭建了 Ubuntu18.04 虚拟机环境,工具包括但不限于: virtuoso IC618,innovus,genus,spectre,xceliummain,formality,synplify,hspice,icc2,primetime,sentaurus,siliconsmart,spyglass,starrc,design compiler,vcs,verdi,calibre,modelsim,tessent,ADS,GoldenGate 等。具体工具及版本见后文图片。虚拟机工

    2024年04月14日
    浏览(59)
  • 数字集成电路VLSI复习笔记

    逻辑门符号 Inverter CMOS NAND Gate CMOS NOR Gate MOS Capacitor nmos cutoff Linear Saturation Channel Charge Carrier velocity nMOS Linear I-V nMOS Saturation I-V Summary nMOS Operation pMOS Operation Inverter Step Response Delay Definitions 3-input NAND Caps Elmore Delay Estimate rising and falling propagation delays of a 2-input NAND driving h identical

    2024年01月18日
    浏览(43)
  • 集成电路安全(二):硬件木马检测

    之前在一篇文章《硬件安全一点点概要》简单介绍了一下硬件的安全机制,这里通过一些论文和书籍资料,对这个部分进行进一步的展开讲解。 随着信息技术的出现,网络已经深入到人们的日常生活并发挥着越来越重要的作用。在这种形势下,网络攻击风险也与日俱增。自

    2024年02月10日
    浏览(30)
  • 集成电路相关电子书3

    电子书全部在公众号内部获取 注:文中提到的书籍都会在公众号对应文章末尾给出链接,不需要在微信后台获取,当然还是可以通过在微信后台回复相关书名获取对应的电子书。   本书与读者分享作者24年IC设计经验的实用设计知识。作者讨论了IC设计人员共同面临的问题

    2023年04月09日
    浏览(30)
  • 【模拟集成电路】反馈系统——基础到进阶(一)

      本文主要对集成电路中反馈相关内容进行归纳总结,并在总结的基础上融入个人的一些理解,首先是反馈的一些相关概念,这是深入学习反馈并完成进阶所不可或缺的,然后在对反馈基本结构和相关特性有了基本的认识后,将会深入讨论四种典型反馈结构的特性,   在

    2024年02月12日
    浏览(32)
  • 【模拟CMOS集成电路设计】学习笔记(一)

      持续更新,若有后续更新,更新链接将附于文末,后续有时间会对内容更新。   放大器放大的是小信号,只有在特定的静态工作点下,小信号放大才有意义,因此一些小信号指标常与某个DC点相关联,若小信号幅度超过系统输入范围要求,则将会发生线性失真,合适的

    2024年02月10日
    浏览(30)
  • 模拟CMOS集成电路设计入门学习(3)

    共源极 (1)采用电阻负载的共源极 电路的大信号和小信号的特性我们都需要研究。{电路的 输入阻抗 在 低频 时非常高} ①从0开始增大, 截止 ,; ②接近时,开始 导通 ,电流流经使减小; ③进一步增大,也变大但还小于时,NMOS管仍处于 饱和区 ,直到 即=时( 预夹断 )

    2024年02月07日
    浏览(37)
  • 模拟CMOS集成电路设计入门学习(6)

    共源共栅结构(Cascode) 回顾: 共源级 中晶体管可以将电压信号转换为电流信号; 共栅级 的输入信号可以是电流。 将共源级和共栅级进行级联:  :输入器件;:共源共栅器件; {流经和的电流相等} (1)分析共源共栅结构的偏置条件   ① 为了保证工作在饱和区 ,必须满

    2024年02月09日
    浏览(43)
  • 集成电路CAD课程实验报告:二输入与非门电路设计、版图设计与仿真

    一、实验目的: 1、掌握Cadence Virtuoso快捷键技巧,学会使用Cadence进行原理图设计、版图设计、原理图仿真。 实验使用AMI 0.6u C5N工艺,了解NCSU Cadence设计套件(NCSU_Analog_Parts库)的使用。 实现二输入与非门电路设计、版图设计与仿真。 实验步骤: 在库管理器中添加一个库,为

    2024年02月04日
    浏览(48)
  • 数字集成电路后端(Innovus)开发设计

    一、本文目的是对数字IC进行: 1、平面规划设计(Floorplanning the Design); 2、电源路径设计( Routing Power with Special Route); 3、使用Early Global Router分析路径(布线)可行性(Analyzing Route Feasibility with the Early Global Router)。 二、设计过程与结果: 1、平面规划设计(Floorplanning

    2024年02月05日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包