基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)

这篇具有很好参考价值的文章主要介绍了基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

物体检测的应用已经深入到我们的日常生活中,包括安全、自动车辆系统等。对象检测模型输入视觉效果(图像或视频),并在每个相应对象周围输出带有标记的版本。这说起来容易做起来难,因为目标检测模型需要考虑复杂的算法和数据集,这些算法和数据集在我们说话的时候就已经被完善和开发了。

以下是我们今天要介绍的内容,为您全面介绍目标检测:

1、目标检测基础

在深入研究对象检测应用程序、用例和基本对象检测方法之前,对对象检测本身有一个明确的理解是至关重要的。该术语通常与图像分类、对象识别、分割等技术交替使用。然而,必须承认,上面提到的许多任务都是单独的任务,通常属于目标检测。将它们彼此等同使用是不准确的,因为它们都涉及同样重要的任务。
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)

什么是目标检测

目标检测是一种深刻的计算机视觉技术,专注于识别和标记图像、视频甚至实时镜头中的对象。为了在新数据中执行这一过程,目标检测模型使用剩余的带注释的视觉图像进行训练。它变得像输入视觉效果和接收完全标记的输出视觉效果一样简单。稍后我们将更深入地讨论目标检测模型。一个关键组件是对象检测边界框,它识别带有清晰四边形标记的对象的边缘-通常是正方形或矩形。它们都伴随着对象的标签,无论是人、车还是狗来描述目标对象。边界框可以重叠以显示给定镜头中的多个对象,只要模型对其标记的项目有先验知识。

对象检测与其他任务

让我们单独分解其他计算机视觉任务,以便更好地理解每个任务:

  • 图像分类(Image classification) :这是对图像中项目类别的预测。例如,当您在Google上执行反向图像搜索时,您可能会收到一条提示“可能包含’ x ‘,其中’ x '是该技术检测到的图像的主要对象。图像分类可以显示图像中存在一个特定的对象,但它涉及一个主要对象,并且不提供对象在视觉中的位置。
  • 分割(Segmentation):也称为语义分割,它是将具有可比属性的像素分组在一起的任务,而不是用边界框来识别对象。
  • 目标定位(Object localization ):与目标检测的区别非常微妙但很明显。对象定位旨在识别图像中一个或多个对象的位置,而对象检测则识别所有对象及其边界,而不太关注位置。

2、深度学习vs机器学习

现在你已经掌握了我们对对象检测的基本介绍,现在是时候看看对象检测的两个主要模型:深度学习和机器学习。数据分析师通常认为深度学习方法是相对先进的方法,因为它被认为更直观,不需要太多的人为干预。最终,这两种方法都会产生准确的结果,但这次我们将专注于用深度学习进行对象检测。
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)

什么是深度学习的目标检测?

将深度学习的目标检测与其他方法区分开来的是卷积神经网络(CNN)的使用。神经网络模仿了人类大脑的复杂神经结构。它们主要由输入层、隐藏内层和输出层组成。这些神经网络的学习可以是有监督的、半监督的和无监督的,指的是有多少训练数据被注释了,如果有的话(无监督)。由于cnn能够在较少的人工工程的情况下自动学习,因此用于对象检测的深度神经网络产生了迄今为止最快和最准确的单个和多个对象检测结果。有一个关于深度学习和cnn的世界需要解开,但今天我们只关注关于目标检测算法和模型的关键点。

3、方法与算法

如果没有专门为处理该任务而设计的模型,对象检测是不可能的。这些目标检测模型是用成千上万的视觉内容来训练的,以便在以后的自动基础上优化检测精度。通过随时可用的数据集(如COCO(上下文中的公共对象))的帮助,可以有效地训练和精炼模型,从而帮助您在扩展注释管道方面领先一步。

让我们仔细看看几种最突出的目标检测算法和方法。

R-CNN, Fast R-CNN, Faster R-CNN

第一个很大程度上成功的方法家族是R-CNN(基于区域的卷积神经网络),该方法于2014年提出。它超越了之前的方法,只从图像中提取了2000个区域,这被称为区域建议,而不是之前的大量区域。R-CNN的流程图如下:选择输入图像,从中提取2000个区域建议。接下来,将从每个单独的区域中提取特征,然后将其分类为已知的类之一。R-CNN的主要缺点在于,虽然提取了2000个地区的提案,但过程很长。这就是为新的和改进的快速R-CNN铺平了道路。

不仅具有大量区域的目标检测过程非常耗时,而且具有如此多区域的CNN训练也非常耗时。Fast R-CNN通过将图像输入到预训练的CNN中以生成卷积特征映射,从而大大减少了处理时间,消除了将图像分解为2000个区域建议的过程。相反,区域建议可以很容易地从特征映射中识别出来,将它们发送到RoI池层,后者从给定的区域中提取特征。然后,前一层的输出由一个完全连接的层处理,其中模型分为两个输出:一个用于通过softmax层进行类预测,另一个用于通过线性输出进行边界框预测。

从R-CNN到快速R-CNN的跳跃有多重要?CNN的训练时间从84小时下降到9小时。此外,测试时间从50秒下降到2.5秒

后来又推出了第三款,也是更加升级的型号,被称为Faster R-CNN。该架构类似于Fast R-CNN,但有一些值得注意的调整。更快的R-CNN不使用选择性搜索,这是基于相似区域的分层分组。区域提案网络将取而代之,以便以创纪录的速度确定区域提案。它将2.5秒的测试速度从快速R-CNN降低到无与伦比的0.2秒,使其成为其前身中最快的,并且是实时目标检测的最佳选择。

YOLO

如果我们说有一个比R-CNN更快的卷积神经网络呢?嗯,有!2015年,一个神经网络家族被提出,缩写为YOLO,参考了著名的短语“你只活一次”。这依赖于一个简单的事实,即网络在输出最终图像之前只“看一眼”或通过网络一次。这允许对象检测与实时镜头,这是相当可取的监视相关的应用。由于其特殊的速度,检测到的物体的准确性低于前面提到的模型,但它仍然成功地成为其他模型中的顶级竞争者。
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)

4、用例和应用程序

深度学习的目标检测在我们的日常生活中非常普遍,正如我们已经看到的一些例子。它在现代世界的重要性远远超过许多人最初的设想。

监视、安全和交通

撇开数据标签不谈,视频和实时镜头中的目标检测是最先进监控的基石。计算机视觉旨在不断超越预期,创新盗窃检测、交通违规、可疑的人类活动等。所有这些过程正逐渐得到比以往任何时候都更有效的监测。

汽车

对于自动驾驶来说,物体检测是必须的,以便汽车在下一刻决定是否加速、刹车或转弯。这就需要物体检测来识别一系列事物,比如汽车、行人、交通信号、道路标志、自行车、摩托车等等。

医疗

目标检测在医学领域,特别是放射学领域呈现出完美的发展。虽然这项技术不会完全取代放射科医生和其他专家对专业知识的需求,但它将大大减少每天分析数百到数千次超声波扫描,甚至x射线、核磁共振成像和CT扫描的时间。

零售

不需要人工库存检查的智能库存管理,无收银员购物体验,以及更多的零售商在他们的商店中实施对象检测计算机视觉。

5、关键的外卖

目标检测是图像分类和对象定位相结合的地方,用于解释和标记从图像到实时镜头的各种视觉效果。在过去的十年中,使用深度学习的目标检测模型在处理时间和速度上显著降低,如果没有cnn,这是不可行的。我们可以清楚地看到,从智能手机的安全功能到下一代智能汽车所依赖的基础,物体检测的应用非常普遍。毕竟,目标检测模型每天都在进化、成长和创新,以变得更加准确,并解决现代世界中更多的实时问题。

我们希望通过深度学习对目标检测的基本介绍将作为进一步建立的基础。文章来源地址https://www.toymoban.com/news/detail-500117.html

到了这里,关于基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 竞赛保研 基于深度学习的目标检测算法

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的目标检测算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图

    2024年02月02日
    浏览(27)
  • 使用halcon实现基于深度学习的目标检测

    数据集 数据集的类别已有不需要另外指定,这是因为在读取之前已有数据集的时候,数据集中就会包含了许多数据,其中结构如下: 包括类别序号以及类别名字 预训练模型或者模型 预训练模型也有了基本的参数,如下所示: 训练集、验证集以及测试集的区别 : 一般会认为

    2024年02月05日
    浏览(58)
  • 挑战杯 基于深度学习的目标检测算法

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的目标检测算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图

    2024年03月09日
    浏览(31)
  • OpenCV实例(九)基于深度学习的运动目标检测(一)YOLO运动目标检测算法

    2012年,随着深度学习技术的不断突破,开始兴起基于深度学习的目标检测算法的研究浪潮。 2014年,Girshick等人首次采用深度神经网络实现目标检测,设计出R-CNN网络结构,实验结果表明,在检测任务中性能比DPM算法优越。同时,何恺明等人针对卷积神经网络(Convolutional Neura

    2024年02月13日
    浏览(24)
  • 【深度学习目标检测】三、基于yolov8的人物摔倒检测

    深度学习目标检测方法则是利用深度神经网络模型进行目标检测,主要有以下几种: R-CNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN等,通过候选区域法生成候选目标区域,然后使用卷积神经网络提取特征,并通过分类器对每个候选区域进行分类。 SSD:Single Shot MultiBox Detector,通过

    2024年02月04日
    浏览(20)
  • 基于opencv深度学习,交通目标检测,行人车辆检测,人流统计,交通流量检测

    文章目录 0 前言+ 1. 目标检测概况+ 1.1 什么是目标检测?+ 1.2 发展阶段 2. 行人检测+ 2.1 行人检测简介+ 2.2 行人检测技术难点+ 2.3 行人检测实现效果+ 2.4 关键代码-训练过程 最后 设计项目案例演示地址: 链接 毕业设计代做一对一指导项目方向涵盖: 1.1 什么是目标检测? 目标检

    2024年02月04日
    浏览(31)
  • 基于YOLOv8深度学习的葡萄簇目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

    《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌ 更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍 感谢小伙伴们点赞、关注! 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】

    2024年01月19日
    浏览(57)
  • 【深度学习目标检测】十五、基于深度学习的口罩检测系统-含GUI和源码(python,yolov8)

    YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。 YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一

    2024年02月02日
    浏览(42)
  • 【深度学习目标检测】十七、基于深度学习的洋葱检测系统-含GUI和源码(python,yolov8)

    使用AI实现洋葱检测对农业具有以下意义: 提高效率:AI技术可以快速、准确地检测出洋葱中的缺陷和问题,从而提高了检测效率,减少了人工检测的时间和人力成本。 提高准确性:AI技术通过大量的数据学习和分析,能够更准确地识别出有缺陷的洋葱,降低了误判和漏检的

    2024年01月22日
    浏览(25)
  • 用于自动驾驶的基于深度学习的图像 3D 目标检测:综述

    论文地址:https://ieeexplore.ieee.org/abstract/document/10017184/ 准确、鲁棒的感知系统是理解自动驾驶和机器人驾驶环境的关键。自动驾驶需要目标的 3D 信息,包括目标的位置和姿态,以清楚地了解驾驶环境。 摄像头传感器因其颜色和纹理丰富且价格低廉而广泛应用于自动驾驶中。摄

    2024年02月03日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包