4实现中断异常相关指令-1【FPGA模型机课程设计】

这篇具有很好参考价值的文章主要介绍了4实现中断异常相关指令-1【FPGA模型机课程设计】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

2023-5-23 16:43:50

以下内容源自《【FPGA模型机课程设计】》
仅供学习交流使用

推荐

0集中实践环节计划书【FPGA模型机课程设计】

修正

修改于2023-5-26 14:45:16


此处SC功能实现有问题
SC的rt<-1不能在EX中实现
需要放入到MEM中
需要知道操作是否成功
得到rt<-1(成功)或者rt<-0(失败)

而不是在EX中
使用


				//原子
				`Sc:
					regcData = 32'b1;

使得结果都把rt<-1

所以EX与之前一样不需要修改
要对MEM进行修改


4实现中断异常相关指令-1

安排

第一周周四:

选择MIPS与中断异常相关的6条指令,继续将完整模型机的指令进行实现。学生将在Modelsim里仿真验证通过的模型机程序,并编写具体测试指令,能够通过简单的中断异常机器指令对中断异常等功能进行测试。

表3 MIPS 与中断异常相关6条指令

本篇文章实现原子指令(前两条指令)
下篇文章实现中断异常指令(后四条指令)
4实现中断异常相关指令-1【FPGA模型机课程设计】

测试与结果

		//测试原子指令


		//计算地址说明
		//(r1)=0000 1100
		//    +0000 0020
		//addr=0000 1120  
		//    =1000100100000 字节地址
		//    =100 0100 1000 字地址
		//	  =448H	         只有1K空间
		//    =48H		     丢掉了高位的1位
		//    =72
		//mem[72]<-->(r7)

		//测试功能
		//R1=00001100 R2=00000020 
		//Lpt: 	LL r7,0x20(r1)		//读取程序里的信号量,LLibt=1
		//ll r7,0x20(r2) --(r7)=mem[72]=0
		instmem [6] = 32'b110000_00001_00111_0000_0000_0010_0000;//ll r7,0x20(r1)
		//if(r7 == clearFlag)	//判断信号是否被占用,为clearFlag表示没占用
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//bne,r7,r0,else(+4)
		instmem [7] = 32'b000101_00111_00000_0000_0000_0000_0100;//bne,r7,r0,else(+4)
		//{
		//	MOV r7, setFlag			//设置本程序的占用标志
		//ori R7,ffff -- R7 --0000ffff
        instmem [8] = 32'h3407ffff;	//ori  R7 ffff
		//	SC r7, 0x20(r1)			//设置到信号量里
		instmem [9] = 32'b111000_00001_00111_0000_0000_0010_0000;//sc r7,0x20(r1)
		//	if(r7 == 1) goto Success//如果信号量设置成功,r1就会为1
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//bne,r1,r0,Success(+2)
		instmem [10] = 32'b000101_00111_00000_0000_0000_0000_0010;//bne,r7,r0,Success(+2)
		//	//如果信号量没有设置成功,重新读信号量,即重新执行LL指令
		//	else goto Lpt
		//j Lpt(6)
		//pc=jaddr=npc(4) offset(26) 00(2)	
		instmem [11] = 32'h08000006;//j Lpt(6) 编码000010  pc=0018 
		//}
		//else goto Lpt
		//j Lpt(6)
		//pc=jaddr=npc(4) offset(26) 00(2)	
		instmem [12] =  32'h08000006;//j Lpt(6) 编码000010  pc=0018 
		//Success:
		//	访问指定的存储区域
		//	set r7,clearFlag
		//andi R7,0000 -- R7 --00000000
        instmem [13] = 32'h30070000;	//andi R7,0000
		//	lw r7,(0x20)r1
		instmem[14]=32'b100011_00001_00111_0000_0000_0010_0000; //lw r7,0x20(r1)

4实现中断异常相关指令-1【FPGA模型机课程设计】

修改之后

可以看到三个变量之间的关系

	//二选一,选出Sc指令的rt<-1或rt<0
	wire [31:0]regDataLL= (rLLbit==`SetFlag) ? 32'b1 : 32'b0; 
	//二选一,存往regFile的值 sc指令存的值regcDataLL 还是  寄存器传入的值regcData
	wire [31:0]regcDataLL=  (op == `Sc ) ? regDataLL : regcData;
	//二选一,存往regFile的值 lw取得的值rdData 还是 regcDataLL
    assign regData = (op == `Lw) ? rdData : regcDataLL;  

4实现中断异常相关指令-1【FPGA模型机课程设计】

原子指令设计

参考:教学资料

原子指令介绍:
Wait(信号量)和Signal(信号量)
信号量机制

MIPS是通过在临界区域执行读修改写(Read-Modify-Write)这样的链接加载和条件存储指令,对信号量进行设定,完成不同任务之间的通信工作。
MIPS32架构采用链接加载指令LL、条件存储指令SC来实现这种信号量机制,即两条指令来显示wait函数。
LL/SC指令的优点在于它更适合RISC体系结构,主要体现在以下两个方面。

  1. 读指令和写指令分离,符合设计理念。
  2. 指令都只需要两个寄存器(分别存放地址和值),符合RISC的ISA。

对比与lw与sw指令,ll与sc只是多了和对LLbit寄存器的操作
4实现中断异常相关指令-1【FPGA模型机课程设计】

1)ll指令用法:ll rt,offset(base)。
          ll指令作用:ll是特殊的加载类指令。从内存中指定的地址处读取出一个字,保存到目的寄存器rt中。加载地址的计算公式如下:
          加载地址=signed_extended(offset)+GPR[base]
          然后,设置LLbit标志位为1。
(2)sc指令用法:sc rt,offset(base)。
           sc指令作用:如果RMW操作序列的干扰没有发生,无异常发生,也就是LLbit标志位是1的时候,那么将通用寄存器rt的值保存到内存中指定的
           地址处,同时设置通用寄存器rt的值为1,设置LLbit寄存器为0,表示一个RMW操作顺利完成;如果RMW序列发生异常,受到了干扰,也就是
           LLbit标志位为0,那么就不对内存数据进行修改,同时使通用寄存器rt为0。其中存储地址的计算公式同ll指令中的加载地址计算公式。

本次设计中, MIPS是单处理器系统,所以暂不讨论多处理器系统。多处理器还要检测加载的地址是否会被其他处理器访问。单处理器环境仅考虑中断异常情况。
LLbit寄存器用于存储LLbit的值。在时钟的上升沿,如果复位有效,那么LLbit值为0,如果有异常或中断发生,LLbit也置为0。其余情况下,LLbit不变,即等于写入的LLbit的值。
即LL指令执行后,若没有中断异常发生,则SC指令是可以成功执行的,也就是可以正常写入数据。

执行ll与sc指令时,在写入DataMem,需要对LLbit进行处理
4实现中断异常相关指令-1【FPGA模型机课程设计】

使用举例:伪代码
类似于:TestAndSet与信号量机制

Lpt: 	LL r1,0x20(r2)		//读取程序里的信号量,LLibt=1 r1=datamem[addr]=0
		if(rl == clearFlag)	//判断信号是否被占用,为clearFlag表示没占用
		{
			MOV r1, setFlag			//设置本程序的占用标志 r1=setFlag
			SC r1, 0x20(r2)			//设置到信号量里			datamem[addr]=rt=setFlag rt=1 llbit=0
			if(rl == 1) goto Success//如果信号量设置成功,r1就会为1 pc=success
			//如果信号量没有设置成功,重新读信号量,即重新执行LL指令
			else goto Lpt				//pc=lpt
		}
		else goto Lpt	//pc=lpt
Success:
		访问指定的存储区域
		set r1,clearFlag	 //r1=clearFlag
		lw r1,(0x20)r2		 //r1=datamem[addr]=0

代码设计

define


//0、宏定义文件
`define SetFlag 1'b1
`define ClearFlag 1'b0

//MIPS 扩展整数指令集
//表3 MIPS 与中断异常相关6条指令
`define Inst_ll 6'b110000	 //i
`define Inst_sc 6'b111000	 //i

//内部供EX的编码
`define Ll 6'b011011
`define Sc 6'b011100

ID

I型指令中添加

					//ll sc
				    `Inst_ll:
						 begin
							  op = `Ll;
						      regaRead = `Valid;
							  regbRead = `Invalid;
							  regcWrite = `Valid;
							  regaAddr = inst[25:21];
							  regbAddr = `Zero;
							  regcAddr = inst[20:16];
							  imm = {{16{inst[15]}},inst[15:0]};
						end						

				    `Inst_sc:
						 begin
							 op = `Sc;
						      regaRead = `Valid;
							  regbRead = `Valid;
							  regcWrite = `Valid;//还需给rt赋值为1
							  regaAddr = inst[25:21];
							  regbAddr = inst[20:16];
							  regcAddr = inst[20:16];//还需给rt赋值为1
							  imm = {{16{inst[15]}},inst[15:0]};
						end						

	//修改
	always@(*)      
	    if(rst == `RstEnable)          
	        regaData = `Zero;      
	    else if(op == `Lw || op == `Sw || op==`Ll || op==`Sc)               
	        regaData = regaData_i + imm;      
	    else if(regaRead == `Valid)          
	        regaData = regaData_i;      
	    else          
	        regaData = imm;    


EX

所以EX与之前一样不需要修改

添加功能

//				`Sc:
//					regcData = 32'b1;

可以把其注释掉

Mem

添加一个输入引脚
两个输出引脚

添加功能ll与sc
类似lw与sw

修改:添加regcData的处理

module MEM(
	input wire rLLbit;		//llsc
	
	output reg wbit,		//llsc
	output reg wLLbit		//llsc
);

	//assign regData = (op == `Lw) ? rdData : regcData;  

	//因为regData是wire型的,所以为了不修改原来的代码,就不使用always
	//而是修改regcData的值,来传到regData


	//二选一,选出Sc指令的rt<-1或rt<0
	wire [31:0]regDataLL= (rLLbit==`SetFlag) ? 32'b1 : 32'b0; 
	//二选一,存往regFile的值 sc指令存的值regcDataLL 还是  寄存器传入的值regcData
	wire [31:0]regcDataLL=  (op == `Sc ) ? regDataLL : regcData;
	//二选一,存往regFile的值 lw取得的值rdData 还是 寄存器传入的值regcData
    assign regData = (op == `Lw) ? rdData : regcDataLL;  



	always @ (*)        
	    if(rst == `RstEnable)          
	      begin            
	          wtData = `Zero;            
	          memWr = `RamUnWrite;            
	          memCe = `RamDisable;  
			  wbit=	`Invalid;
   			  wLLbit=`ClearFlag;
	      end        
		else
		  begin
	        wtData = `Zero;            
	        memWr = `RamUnWrite;            
	        memCe = `RamDisable;  
			wbit=	`Invalid;
   			wLLbit=`ClearFlag;

			case(op)     

         
				//Ll Sc
				`Ll:
					begin		
						//rt<-datamem[addr]
						//不需要写到DataMem中
			         	wtData = `Zero;                  
			         	memWr = `RamUnWrite;                     
			         	memCe = `RamEnable; 
    					//LLbit<-1
						wbit=`Valid;
						wLLbit = `SetFlag;
					end
				`Sc:
					begin	
						if(rLLbit==`SetFlag)
							begin	
								//datamem[addr]<-rt
			         			wtData = memData;                    
			         			memWr = `RamWrite;                      
			        			memCe = `RamEnable;    
								//rt<-1
								//在Mem前面对regcData处理来实现
								//LLbit<-0
								wbit=`Valid;
								wLLbit = `ClearFlag;
							end
						else
							begin
								//这里不是把LLbit<-0
								//wbit=`Valid;
								//wLLbit = `ClearFlag;
								//而是把rt<-0
								//在Mem前面对regcData处理来实现
							end
					end
				default:                  
				    begin                    
				        wtData = `Zero;                    
				        memWr = `RamUnWrite;                    
				        memCe = `RamDisable;  
				 		wbit=	`Invalid;
	   			  		wLLbit=`ClearFlag;                
				    end   
			endcase
		  end

LLbit

添加LLbit寄存器

类似于HiLo寄存器的设计

`include "define.v"
//LLbit寄存器
module LLbit(
	input wire clk,
	input wire rst,
	input wire excpt,
	input wire wbit, 	//写信号
	input wire wLLbit,	//写数据
	output reg rLLbit	//读数据
);

	reg LLbit;//内部存储

	always@(*)
        if(rst == `RstEnable)
            rLLbit = `Zero;
        else
            rLLbit = LLbit;

    
    always@(posedge clk)
        if(rst ==`RstDisable && wbit==`Valid)
            LLbit=wLLbit;
        else ;

endmodule

MIPS

修改顶层封装

	//llsc
	wire excpt;
	wire wbit;
	wire wLLbit;
	wire rLLbit;

	//新增Mem实例化
	//修改Mem实例化 llsc
	MEM mem0(
        .rst(rst),		
	    .op(op_ex),
	 	.regcData(regcData_ex),
		.regcAddr(regcAddr_ex),
		.regcWr(regcWrite_ex),
		.memAddr_i(memAddr_ex),
		.memData(memData_ex),	
		.rdData(rdData),
		.rLLbit(rLLbit),//llsc
		.regAddr(regAddr_mem),
		.regWr(regWr_mem),
		.regData(regData_mem),	
		.memAddr(memAddr),
		.wtData(wtData),
		.memWr(memWr),	
		.memCe(memCe),
		.wbit(wbit),   //llsc
		.wLLbit(wLLbit)//llsc
	);

	//新增LLbit实例化 llsc
	LLbit llbit0(
		.clk(clk),
		.rst(rst),
		.excpt(excpt),
		.wbit(wbit), 	
		.wLLbit(wLLbit),	
		.rLLbit(rLLbit)
	);


InstMem

		//测试原子指令


		//计算地址说明
		//(r1)=0000 1100
		//    +0000 0020
		//addr=0000 1120  
		//    =1000100100000 字节地址
		//    =100 0100 1000 字地址
		//	  =448H	         只有1K空间
		//    =48H		     丢掉了高位的1位
		//    =72
		//mem[72]<-->(r7)

		//测试功能
		//R1=00001100 R2=00000020 
		//Lpt: 	LL r7,0x20(r1)		//读取程序里的信号量,LLibt=1
		//ll r7,0x20(r2) --(r7)=mem[72]=0
		instmem [6] = 32'b110000_00001_00111_0000_0000_0010_0000;//ll r7,0x20(r1)
		//if(r7 == clearFlag)	//判断信号是否被占用,为clearFlag表示没占用
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//bne,r7,r0,else(+4)
		instmem [7] = 32'b000101_00111_00000_0000_0000_0000_0100;//bne,r7,r0,else(+4)
		//{
		//	MOV r7, setFlag			//设置本程序的占用标志
		//ori R7,ffff -- R7 --0000ffff
        instmem [8] = 32'h3407ffff;	//ori  R7 ffff
		//	SC r7, 0x20(r1)			//设置到信号量里
		instmem [9] = 32'b111000_00001_00111_0000_0000_0010_0000;//sc r7,0x20(r1)
		//	if(r7 == 1) goto Success//如果信号量设置成功,r1就会为1
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//bne,r1,r0,Success(+2)
		instmem [10] = 32'b000101_00111_00000_0000_0000_0000_0010;//bne,r7,r0,Success(+2)
		//	//如果信号量没有设置成功,重新读信号量,即重新执行LL指令
		//	else goto Lpt
		//j Lpt(6)
		//pc=jaddr=npc(4) offset(26) 00(2)	
		instmem [11] = 32'h08000006;//j Lpt(6) 编码000010  pc=0018 
		//}
		//else goto Lpt
		//j Lpt(6)
		//pc=jaddr=npc(4) offset(26) 00(2)	
		instmem [12] =  32'h08000006;//j Lpt(6) 编码000010  pc=0018 
		//Success:
		//	访问指定的存储区域
		//	set r7,clearFlag
		//andi R7,0000 -- R7 --00000000
        instmem [13] = 32'h30070000;	//andi R7,0000
		//	lw r7,(0x20)r1
		instmem[14]=32'b100011_00001_00111_0000_0000_0010_0000; //lw r7,0x20(r1)

4实现中断异常相关指令-1【FPGA模型机课程设计】

附录

其余与上篇一样

0 框架

顶层设计
4实现中断异常相关指令-1【FPGA模型机课程设计】
代码框架
4实现中断异常相关指令-1【FPGA模型机课程设计】

1 define 编码

//0、宏定义文件
`define RstEnable 1'b1
`define RstDisable 1'b0
`define RomEnable 1'b1
`define RomDisable 1'b0
`define Zero 0
`define Valid 1'b1
`define Invalid 1'b0
`define SetFlag 1'b1 	//检查LLbit的值,控制信号,不是数据信号
`define ClearFlag 1'b0	//检查LLbit的值,控制信号,不是数据信号

//MEM宏编译
`define RamWrite 1'b1
`define RamUnWrite 1'b0
`define RamEnable 1'b1
`define RamDisable 1'b0

//指令外部编码

//MIPS 基本整数指令集
//表1 20条MIPS整数指令

//R型编码
`define Inst_reg 6'b000000

`define Inst_add 6'b100000
`define Inst_sub 6'b100010
`define Inst_and 6'b100100
`define Inst_or  6'b100101
`define Inst_xor 6'b100110
`define Inst_sll 6'b000000
`define Inst_srl 6'b000010
`define Inst_sra 6'b000011
`define Inst_jr  6'b001000

//I型编码
`define Inst_addi 6'b001000
`define Inst_andi 6'b001100
`define Inst_ori  6'b001101
`define Inst_xori 6'b001110
`define Inst_lw 6'b100011
`define Inst_sw 6'b101011
`define Inst_beq  6'b000100	
`define Inst_bne  6'b000101	
`define Inst_lui  6'b001111

//J型编码
`define Inst_j 	 6'b000010	
`define Inst_jal 6'b000011	


//MIPS 扩展整数指令集
//表2 MIPS 12条整数指令
`define Inst_slt 6'b101010
`define Inst_bgtz 6'b000111	//j i	
`define Inst_bltz 6'b000001	//j i 	
`define Inst_jalr 6'b001001	//r 
`define Inst_mult 6'b011000	 //r 
`define Inst_multu 6'b011001 //r 
`define Inst_div 6'b011010	 //r 
`define Inst_divu 6'b011011 //r 
`define Inst_mfhi 6'b010000	 //r 
`define Inst_mflo 6'b010010	 //r 
`define Inst_mthi 6'b010001	 //r 
`define Inst_mtlo 6'b010011	 //r 

//表3 MIPS与中断异常相关6条指令
`define Inst_ll 6'b110000	 //i
`define Inst_sc 6'b111000	 //i

`define Inst_mfc0 6'b000000	 //010000扩展编码
`define Inst_mtc0 6'b000000	 //010000扩展编码
`define Inst_eret 6'b011000	 //010000扩展编码
`define Inst_eret 6'b001100	 //r

//另外
//`define Inst_subi 6'b001001	//i


//内部供EX的编码
`define Nop 6'b000000
`define Or  6'b000001
`define And 6'b000010
`define Xor 6'b000011
`define Add 6'b000100
`define Sub 6'b000101
`define Lui 6'b100000 
`define Sll 6'b000110
`define Srl 6'b000111
`define Sra 6'b001000


`define J   6'b001001
`define Jal 6'b001010
`define Jr  6'b001011
`define Beq 6'b001100
`define Bne 6'b001101
`define Bgtz 6'b001110
`define Bltz 6'b001111

`define Lw  6'b010000
`define Sw  6'b010001

`define Slt  6'b010010
`define Mult 6'b010011
`define Multu 6'b010100
`define Div 6'b010101
`define Divu 6'b010110

`define Mfhi 6'b010111
`define Mflo 6'b011000
`define Mthi 6'b011001
`define Mtlo 6'b011010
`define Ll 6'b011011
`define Sc 6'b011100

3 ID 译码

`include "define.v";

//ID 译码模块
//2、为操作数做准备

module  ID (
    input wire rst,    
	input wire [31:0] pc,	//J型
    input wire [31:0] inst,
    input wire [31:0] regaData_i,
    input wire [31:0] regbData_i,
    output reg [5:0] op,    
    output reg [31:0] regaData,
    output reg [31:0] regbData,
    output reg regaRead,
    output reg regbRead,
    output reg regcWrite,
    output reg [4:0] regaAddr,
    output reg [4:0] regbAddr,    
    output reg [4:0] regcAddr,
	output reg [31:0] jAddr,	//J型
    output reg jCe//J型

);

    //操作指令
    wire [5:0] inst_op = inst[31:26];   
    //扩展的立即数 
    reg [31:0] imm;
	//用于R型指令
    wire[5:0] func = inst[5:0]; 
	//用于J型指令
	wire [31:0] npc = pc + 4;

    always@(*)
        if(rst == `RstEnable)
          	 begin
            	op = `Nop;            
	            regaRead = `Invalid;
	            regbRead = `Invalid;
	            regcWrite = `Invalid;
	            regaAddr = `Zero;
	            regbAddr = `Zero;
	            regcAddr = `Zero;
	            imm    = `Zero;
				jCe = `Invalid;//J型
	            jAddr = `Zero;//J型
          	 end
		else 
			begin//后面的end
			    jCe = `Invalid;//J型
		        jAddr = `Zero;//J型
	          	case(inst_op)
	               	`Inst_ori:
	                 	begin
		                    op = `Or;                    
		                    regaRead = `Valid;
		                    regbRead = `Invalid;
		                    regcWrite = `Valid;
		                    regaAddr = inst[25:21];
		                    regbAddr = `Zero;
		                    regcAddr = inst[20:16];
		                    imm = {16'h0, inst[15:0]};
	                  	end
				    `Inst_andi:
			  		  	begin
		                    op = `And;                    
		                    regaRead = `Valid;
		                    regbRead = `Invalid;
		                    regcWrite = `Valid;
		                    regaAddr = inst[25:21];
		                    regbAddr = `Zero;
		                    regcAddr = inst[20:16];
		                    imm = {16'h0, inst[15:0]};
		                end
					`Inst_xori:
			 			begin
		                    op = `Xor;                    
		                    regaRead = `Valid;
		                    regbRead = `Invalid;
		                    regcWrite = `Valid;
		                    regaAddr = inst[25:21];
		                    regbAddr = `Zero;
		                    regcAddr = inst[20:16];
		                    imm = {16'h0, inst[15:0]};
	                  	end
	
					`Inst_addi:
				  		begin
		                    op = `Add;                    
		                    regaRead = `Valid;
		                    regbRead = `Invalid;
		                    regcWrite = `Valid;
		                    regaAddr = inst[25:21];
		                    regbAddr = `Zero;
		                    regcAddr = inst[20:16];
		                    imm = {{16{inst[15]}}, inst[15:0]};
		                end
//					`Inst_subi:
//					 	begin
//		                    op = `Sub;                    
//		                    regaRead = `Valid;
//		                    regbRead = `Invalid;
//		                    regcWrite = `Valid;
//		                    regaAddr = inst[25:21];
//		                    regbAddr = `Zero;
//		                    regcAddr = inst[20:16];
//		                    imm = {{16{inst[15]}}, inst[15:0]};
//	                    end
					`Inst_lui:
					  	begin
		                    op = `Lui;                    
		                    regaRead = `Valid;
		                    regbRead = `Invalid;
		                    regcWrite = `Valid;
		                    regaAddr = inst[25:21];
		                    regbAddr = `Zero;
		                    regcAddr = inst[20:16];
		                    imm = {inst[15:0],16'h0};
	                  	end
					`Inst_reg:
	        		    case(func)
		                	`Inst_add:
			                    begin
			                        op = `Add;  
				                    regaRead = `Valid;
				                    regbRead = `Valid;
				                    regcWrite = `Valid;
				                    regaAddr = inst[25:21];
				                    regbAddr = inst[20:16];
								    regcAddr = inst[15:11];
				                    imm = `Zero;
			                    end
	
							`Inst_or:
								begin
								    op = `Or;
								    regaRead = `Valid;
								    regbRead = `Valid;
								    regcWrite = `Valid;
								    regaAddr = inst[25:21];
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = `Zero;
								        end
	
								`Inst_sub:
								        begin
								            op = `Sub;
								            regaRead = `Valid;
								            regbRead = `Valid;
								            regcWrite = `Valid;
								            regaAddr = inst[25:21];
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = `Zero;
								        end
	
								`Inst_and:
								        begin
								            op = `And;
								            regaRead = `Valid;
								            regbRead = `Valid;
								            regcWrite = `Valid;
								            regaAddr = inst[25:21];
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = `Zero;
								        end
	
	
								`Inst_xor:
								        begin
								            op = `Xor;
								            regaRead = `Valid;
								            regbRead = `Valid;
								            regcWrite = `Valid;
								            regaAddr = inst[25:21];
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = `Zero;
								        end
	
	
								`Inst_sll:
								        begin
								            op = `Sll;
								            regaRead = `Invalid;
								            regbRead = `Valid;
								            regcWrite = `Valid;
								            regaAddr = `Zero;
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = {27'b0,inst[10:6]};//移位复用imm
								        end
	
								`Inst_srl:
								        begin
								            op = `Srl;
								            regaRead = `Invalid;
								            regbRead = `Valid;
								            regcWrite = `Valid;
								            regaAddr = `Zero;
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = {27'b0,inst[10:6]};//移位复用imm
								        end
	
								`Inst_sra:
								        begin
								            op = `Sra;
								            regaRead = `Invalid;
								            regbRead = `Valid;
								            regcWrite = `Valid;
								            regaAddr = `Zero;
								            regbAddr = inst[20:16];
								            regcAddr = inst[15:11];
								            imm = {27'b0,inst[10:6]};//移位复用imm
								        end
	
	
								//JR型指令
								`Inst_jr:
					 					begin
					   						op = `J;
					   						regaRead = `Valid;//需要读rs
					   						regbRead = `Invalid;
					   						regcWrite = `Invalid;
				   							regaAddr = inst[25:21];
					  	 					regbAddr = `Zero;
					 	 					regcAddr = `Zero;
				   							jAddr = regaData;//regaData=(regaAddr)
			        	        			jCe = `Valid;
				   							imm = `Zero;
				 						end
	
								`Inst_jalr:
					 					begin
					   						op = `Jal;
					   						regaRead = `Valid;
					   						regbRead = `Invalid;
					   						regcWrite = `Valid;
				   							regaAddr = inst[25:21];
					   						regbAddr = `Zero;
					  						regcAddr = 5'b11111;
				   							jAddr = regaData;
			                				jCe = `Valid;
				   							imm = npc;//regbData中存imm npc
				 						end
						
									//12条整数指令
									`Inst_slt:
						 				begin
							 				op = `Slt;
						      				regaRead = `Valid;
							  				regbRead = `Valid;
							  				regcWrite = `Valid;
							  				regaAddr = inst[25:21];
							  				regbAddr = inst[20:16];
							  				regcAddr = inst[15:11];
							  				imm = `Zero;
						 				end		
									//乘除指令
									`Inst_mult:
						 				begin
							 				op = `Mult;
						      				regaRead = `Valid;
							  				regbRead = `Valid;
							  				regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
							  				regaAddr = inst[25:21];
							  				regbAddr = inst[20:16];
							  				regcAddr = `Zero;
							  				imm = `Zero;
						 				end		
									`Inst_multu:
						 				begin
							 				op = `Multu;
						      				regaRead = `Valid;
							  				regbRead = `Valid;
							  				regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
							  				regaAddr = inst[25:21];
							  				regbAddr = inst[20:16];
							  				regcAddr = `Zero;
							  				imm = `Zero;
						 				end		
									`Inst_div:
						 				begin
							 				op = `Div;
						      				regaRead = `Valid;
							  				regbRead = `Valid;
							  				regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
							  				regaAddr = inst[25:21];
							  				regbAddr = inst[20:16];
							  				regcAddr = `Zero;
							  				imm = `Zero;
						 				end		
									`Inst_divu:
						 				begin
							 				op = `Divu;
						      				regaRead = `Valid;
							  				regbRead = `Valid;
							  				regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
							  				regaAddr = inst[25:21];
							  				regbAddr = inst[20:16];
							  				regcAddr = `Zero;
							  				imm = `Zero;
						 				end		
									//后4条指令
									`Inst_mfhi:
						 				begin
							 				op = `Mfhi;
						      				regaRead = `Invalid;
							  				regbRead = `Invalid;
							  				regcWrite = `Valid;//从HILO寄存器中,写到通用寄存器中
							  				regaAddr = `Zero;
							  				regbAddr = `Zero;
							  				regcAddr = inst[15:11];
							  				imm = `Zero;//HiLo的数据在EX中得到
						 				end		
									`Inst_mflo:
						 				begin
							 				op = `Mflo;
						      				regaRead = `Invalid;
							  				regbRead = `Invalid;
							  				regcWrite = `Valid;//从HILO寄存器中,写到通用寄存器中
							  				regaAddr = `Zero;
							  				regbAddr = `Zero;
							  				regcAddr = inst[15:11];
							  				imm = `Zero;//HiLo的数据在EX中得到
						 				end		
									`Inst_mthi:
						 				begin
							 				op = `Mthi;
						      				regaRead = `Valid;//从通用寄存器读出
							  				regbRead = `Invalid;
							  				regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中
							  				regaAddr = inst[25:21];	
							  				regbAddr = `Zero;
							  				regcAddr = `Zero;
							  				imm = `Zero;
						 				end		
									`Inst_mtlo:
						 				begin
							 				op = `Mtlo;
						      				regaRead = `Valid;//从通用寄存器读出
							  				regbRead = `Invalid;
							  				regcWrite = `Invalid;//写到HILO寄存器中,而不是通用寄存器中			
							  				regaAddr = inst[25:21];
							  				regbAddr = `Zero;
							  				regcAddr = `Zero;
							  				imm = `Zero;
						 				end		
								default:
								        begin
								            regaRead = `Invalid;
								            regbRead = `Invalid;
								            regcWrite = `Invalid;
								            regaAddr = `Zero;
								            regbAddr = `Zero;
								 		    regcAddr = `Zero;
								            imm = `Zero;
											
								        end
							endcase
	
					//J型指令
					`Inst_j:
						begin
					   		op = `J;
					   		regaRead = `Invalid;
					   		regbRead = `Invalid;
					   		regcWrite = `Invalid;//不需要写
				   			regaAddr = `Zero;
					   		regbAddr = `Zero;
					  		regcAddr = `Zero;
				   			jAddr = {npc[31:28], inst[25:0], 2'b00};
			                jCe = `Valid;
				   			imm = `Zero;
				 		end				
					`Inst_jal:
					 	begin
					   		op = `Jal;
					   		regaRead = `Invalid;
					   		regbRead = `Invalid;
					   		regcWrite = `Valid;//需要把npc写入R31中
				   			regaAddr = `Zero;
					   		regbAddr = `Zero;
					  		regcAddr = 5'b11111;
				   			jAddr = {npc[31:28], inst[25:0], 2'b00};
			               	jCe = `Valid;
				   			imm = npc;
				 			end
					//J+型指令	
					`Inst_beq:
						begin
							op = `Beq;
							regaRead = `Valid;
							regbRead = `Valid;
							regcWrite = `Invalid;
						   	regaAddr = inst[25:21];
							regbAddr = inst[20:16];
							regcAddr = `Zero;
						   	jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
										
							if(regaData==regbData)
					            jCe = `Valid;//等于有效
							else
								jCe = `Invalid;
						   	imm = `Zero;
					 	end		
					`Inst_bne:
						begin
						   	op = `Beq;
						   	regaRead = `Valid;
						   	regbRead = `Valid;
						   	regcWrite = `Invalid;
					   		regaAddr = inst[25:21];
						   	regbAddr = inst[20:16];
						  	regcAddr = `Zero;
					   		jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
									
							if(regaData!=regbData)
				                jCe = `Valid;//等于有效
							else
								jCe = `Invalid;
					   		imm = `Zero;
					 	end		
					`Inst_bltz:
						begin
						   	op = `Bltz;
						   	regaRead = `Valid;
						   	regbRead = `Valid;//若regbRead无效,则regbData=imm=0
						   	regcWrite = `Invalid;
					   		regaAddr = inst[25:21];
						   	regbAddr = inst[20:16];
						  	regcAddr = `Zero;
					   		jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
									
							if(regaData<regbData)
				                jCe = `Valid;//小于有效
							else
								jCe = `Invalid;
					   		imm = 32'b0;
					 	end		
		
					`Inst_bgtz:
						begin
						   	op = `Bgtz;
						   	regaRead = `Valid;
						   	//regbRead = `Valid;//若regbRead有效,则regbData=(regbAddr)
							regbRead = `Invalid;//若regbRead无效,则regbData=imm=0
						   	regcWrite = `Invalid;
					   		regaAddr = inst[25:21];
						   	regbAddr = inst[20:16];
						  	regcAddr = `Zero;
					   		jAddr = npc+{{14{inst[15]}},inst[15:0], 2'b00};
									
							if(regaData>regbData)
				               	jCe = `Valid;//大于有效
							else
								jCe = `Invalid;
					   		imm = 32'b0;
					 	end		
				 	//Load Store指令
				    `Inst_lw:
				        begin
						    op = `Lw;
						    regaRead = `Valid;
						    regbRead = `Invalid;
						    regcWrite = `Valid;
						    regaAddr = inst[25:21];
						    regbAddr = `Zero;
						    regcAddr = inst[20:16];
						    imm = {{16{inst[15]}},inst[15:0]};
						 end
					
				    `Inst_sw:
						 begin
							 op = `Sw;
						      regaRead = `Valid;
							  regbRead = `Valid;
							  regcWrite = `Invalid;
							  regaAddr = inst[25:21];
							  regbAddr = inst[20:16];
							  regcAddr = `Zero;
							  imm = {{16{inst[15]}},inst[15:0]};
						end		

					//ll sc
				    `Inst_ll:
						 begin
							  op = `Ll;
						      regaRead = `Valid;
							  regbRead = `Invalid;
							  regcWrite = `Valid;
							  regaAddr = inst[25:21];
							  regbAddr = `Zero;
							  regcAddr = inst[20:16];
							  imm = {{16{inst[15]}},inst[15:0]};
						end						

				    `Inst_sc:
						 begin
							 op = `Sc;
						      regaRead = `Valid;
							  regbRead = `Valid;
							  regcWrite = `Valid;
							  regaAddr = inst[25:21];
							  regbAddr = inst[20:16];
							  regcAddr = inst[20:16];
							  imm = {{16{inst[15]}},inst[15:0]};
						end						


					default:
	                  	begin
		                    op = `Nop;                    
		                    regaRead = `Invalid;
		                    regbRead = `Invalid;
		                    regcWrite = `Invalid;
		                    regaAddr = `Zero;
		                    regbAddr = `Zero;
		                    regcAddr = `Zero;
		                    imm = `Zero;
		                end
            	endcase 
			end
   
	/*
	//二选一 regaData= regaData_i : imm
	always@(*)
      if(rst == `RstEnable)
          regaData = `Zero;
      else if(regaRead == `Valid)
          regaData = regaData_i;
      else	
          regaData = imm;
	
   //二选一 regbData= regbData_i : imm
    always@(*)
      if(rst == `RstEnable)
          regbData = `Zero;      
      else if(regbRead == `Valid)
          regbData = regbData_i;
      else
          regbData = imm; 
	*/	

	always@(*)      
	    if(rst == `RstEnable)          
	        regaData = `Zero;      
	    else if(op == `Lw || op == `Sw || op==`Ll || op==`Sc)               
	        regaData = regaData_i + imm;      
	    else if(regaRead == `Valid)          
	        regaData = regaData_i;      
	    else          
	        regaData = imm;    
	always@(*)      
	    if(rst == `RstEnable)          
	        regbData = `Zero;      
	    else if(regbRead == `Valid)          
	        regbData = regbData_i;      
	    else          
	    	regbData = imm;
	
endmodule


4 EX 执行

不需要修改

`include "define.v";
//3、执行指令模块

module EX (
        input wire rst,
        //input wire [5:0] op,   
		input wire [5:0] op_i,      
        input wire [31:0] regaData,
        input wire [31:0] regbData,
        input wire regcWrite_i,
        input wire [4:0] regcAddr_i,
        input wire [31:0] rHiData,//乘除 读hi数据
        input wire [31:0] rLoData,//乘除 读hi数据
        output reg [31:0] regcData,
        output wire regcWrite,
        output wire [4:0] regcAddr,
		output wire [5:0] op,
    	output wire [31:0] memAddr,
    	output wire [31:0] memData,
    	output reg whi,	//乘除 写hi使能
   		output reg wlo,	//乘除 写lo使能
   		output reg [31:0] wHiData,	//乘除 写hi数据
   		output reg [31:0] wLoData  //乘除 写lo数据
    );    

	assign op = op_i;
    assign memAddr = regaData;
    assign memData = regbData;

	always@(*)
        if(rst == `RstEnable)
			begin
              	regcData = `Zero;
				whi=`Invalid;
				wlo=`Invalid;
			  	wHiData=`Zero;
			  	wLoData=`Zero;
			end
        else
            //case(op)
            case(op_i)
                `Or:
                    regcData = regaData | regbData;
				`And:
		    		regcData = regaData & regbData;
				`Xor:
		    		regcData = regaData ^ regbData;
				`Add:
		    		regcData = regaData + regbData;
				`Sub:
		    		regcData = regaData - regbData;
				`Lui:
					begin
		    			regcData = regaData | regbData;
					end
      
             	`Sll:
                	regcData = regbData << regaData;
              	`Srl:
                	regcData = regbData >> regaData;
				`Sra:
					regcData = ($signed(regbData)) >>> regaData;
				
				//J- JR型
				`J:
					regcData = `Zero;
				`Jal:
                    regcData = regbData;//regaData有其他用处  jr给pc=jaddr=(rs)

				//J+型
				`Beq:
					regcData = `Zero;
				`Bne:
					regcData = `Zero;
				`Bltz:
					regcData = `Zero;
				`Bgtz:
					regcData = `Zero;
				//12条整数指令
				`Slt:
					begin
						if($signed(regaData)<$signed(regbData))
							regcData={{31{0}},1};
						else
							regcData={32{0}};
					end
				//乘除指令
				`Mult:
					begin
						whi=`Valid;
						wlo=`Valid;
						{wHiData,wLoData}=
							$signed(regaData)*$signed(regbData);
					end
				`Multu:
					begin
						whi=`Valid;
						wlo=`Valid;
						{wHiData,wLoData}=regaData*regbData;
					end
				`Div:
					begin
						whi=`Valid;
						wlo=`Valid;
						wHiData=$signed(regaData)%$signed(regbData);
						wLoData=$signed(regaData)/$signed(regbData);
					end
				`Divu:
					begin
						whi=`Valid;
						wlo=`Valid;
						wHiData=regaData%regbData;
						wLoData=regaData/regbData;
					end
				//剩余4条指令
				`Mfhi:				
					regcData = rHiData;
				`Mflo:				
					regcData = rLoData;
				`Mthi:		
					begin		
						whi=`Valid;
						wHiData = regaData;
					end
				`Mtlo:		
					begin		
						wlo=`Valid;		
						wLoData = regaData;
					end

//				`Sc:
//					regcData = 32'b1;


                default:
                    regcData = `Zero;
            endcase      
	assign regcWrite = regcWrite_i;
	assign regcAddr = regcAddr_i;
endmodule

5 MEM 访存

`include "define.v";
//访存(mem)模块设计
module MEM(
	input wire rst,		
	input wire [5:0] op,
	input wire [31:0] regcData,
	input wire [4:0] regcAddr,
	input wire regcWr,
	input wire [31:0] memAddr_i,
	input wire [31:0] memData,	
	input  wire [31:0] rdData,
	input wire rLLbit,		//llsc
	output wire [4:0]  regAddr,
	output wire regWr,
	output wire [31:0] regData,	
	output wire [31:0] memAddr,
	output reg [31:0] wtData,
	output reg memWr,	
	output reg memCe,
	output reg wbit,		//llsc
	output reg wLLbit		//llsc
);

	assign regAddr = regcAddr;    
	assign regWr = regcWr;    
//	assign regData = (op == `Lw) ? rdData : regcData;    

	//因为regData是wire型的,所以为了不修改原来的代码,就不使用always
	//而是修改regcData的值,来传到regData


	//二选一,选出Sc指令的rt<-1或rt<0
	wire [31:0]regDataLL= (rLLbit==`SetFlag) ? 32'b1 : 32'b0; 
	//二选一,存往regFile的值 sc指令存的值regcDataLL 还是  寄存器传入的值regcData
	wire [31:0]regcDataLL=  (op == `Sc ) ? regDataLL : regcData;
	//二选一,存往regFile的值 lw取得的值rdData 还是 寄存器传入的值regcData
    assign regData = (op == `Lw) ? rdData : regcDataLL;  

	assign memAddr = memAddr_i;
	




	always @ (*)        
	    if(rst == `RstEnable)          
	      begin            
	          wtData = `Zero;            
	          memWr = `RamUnWrite;            
	          memCe = `RamDisable;  
			  wbit=	`Invalid;
   			  wLLbit=`ClearFlag;
	      end        
		else
		  begin
	        wtData = `Zero;            
	        memWr = `RamUnWrite;            
	        memCe = `RamDisable;  
			wbit=	`Invalid;
   			wLLbit=`ClearFlag;

			case(op)                
			    `Lw:                  
			      begin                    
			         wtData = `Zero;                        
			         memWr = `RamUnWrite;                     
			         memCe = `RamEnable;                    
			      end                
			    `Sw:                  
			      begin                    
			         wtData = memData;                    
			         memWr = `RamWrite;                      
			         memCe = `RamEnable;                   
			     end

				//Ll Sc
				`Ll:
					begin		
						//rt<-datamem[addr]
						//不需要写到DataMem中
			         	wtData = `Zero;                  
			         	memWr = `RamUnWrite;                     
			         	memCe = `RamEnable; 
    					//LLbit<-1
						wbit=`Valid;
						wLLbit = `SetFlag;
					end
				`Sc:
					begin	
						if(rLLbit==`SetFlag)
							begin	
								//datamem[addr]<-rt
			         			wtData = memData;                    
			         			memWr = `RamWrite;                      
			        			memCe = `RamEnable;    
								//rt<-1
								//在EX中实现
								//LLbit<-0
								wbit=`Valid;
								wLLbit = `ClearFlag;
							end
						else
							begin
								wbit=`Valid;
								wLLbit = `ClearFlag;
							end
					end
				default:                  
				    begin                    
				        wtData = `Zero;                    
				        memWr = `RamUnWrite;                    
				        memCe = `RamDisable;  
				 		wbit=	`Invalid;
	   			  		wLLbit=`ClearFlag;                
				    end             
			endcase
		  end
endmodule


新增 LLbit LLbit寄存器

`include "define.v"
//LLbit寄存器
module LLbit(
	input wire clk,
	input wire rst,
	input wire excpt,
	input wire wbit, 	//写信号
	input wire wLLbit,	//写数据
	output reg rLLbit	//读数据
);

	reg LLbit;//内部存储 

	always@(*)
        if(rst == `RstEnable)
            rLLbit = `Zero;
        else
            rLLbit = LLbit;

    
    always@(posedge clk)
        if(rst ==`RstDisable && wbit==`Valid)
            LLbit=wLLbit;
        else ;

endmodule

8 MIPS 封装

`include "define.v";
//5、MIPS封装
//修改EX实例化,新增Mem实例化

//新增端口rdData wtData memAddr memCe memWr
//原op变为op_i
//新增ls内部变量
module MIPS(
    input wire clk,
    input wire rst,
    input wire [31:0] instruction,
    input wire [31:0] rdData,//ls
	output wire romCe,
	output wire [31:0] instAddr,
	output wire [31:0] wtData,//ls
	output wire [31:0] memAddr,//ls
	output wire memCe,//ls
	output wire memWr//ls
);
    wire [31:0] regaData_regFile, regbData_regFile;
    wire [31:0] regaData_id, regbData_id; 
    wire [31:0] regcData_ex;
    //wire [5:0] op; 
    wire [5:0] op_id; //ls  
    wire regaRead, regbRead;
    wire [4:0] regaAddr, regbAddr;
    wire regcWrite_id, regcWrite_ex;
    wire [4:0] regcAddr_id, regcAddr_ex;

	//J型
	wire [31:0] jAddr;
    wire jCe;

	//ls
	wire [5:0] op_ex;
	wire[31:0] memAddr_ex,memData_ex;
	wire [5:0] regAddr_mem;
	wire [31:0] regData_mem;
	wire regWr_mem;

	//md-hl
	wire [31:0] wHiData_ex;
	wire [31:0] wLoData_ex;
	wire whi;
	wire wlo;
	wire [31:0] rHiData_ex;
	wire [31:0] rLoData_ex;

	//llsc
	wire excpt;
	wire wbit;
	wire wLLbit;
	wire rLLbit;



    IF if0(
        .clk(clk),
        .rst(rst),
		.jAddr(jAddr),//J型
		.jCe(jCe),//J型
        .ce(romCe), 
        .pc(instAddr)
    );
    ID id0(
        .rst(rst), 
       	.pc(instAddr),//J型
        .inst(instruction),
        .regaData_i(regaData_regFile),
        .regbData_i(regbData_regFile),
        //.op(op),
		.op(op_id),//ls
        .regaData(regaData_id),
        .regbData(regbData_id),
        .regaRead(regaRead),
        .regbRead(regbRead),
        .regaAddr(regaAddr),
        .regbAddr(regbAddr),
        .regcWrite(regcWrite_id),
        .regcAddr(regcAddr_id),
		.jAddr(jAddr),//J型
		.jCe(jCe)//J型

    );

    //乘除md-修改EX实例化
    EX ex0(
        .rst(rst),
        //.op(op),    
		.op_i(op_id),    
        .regaData(regaData_id),
        .regbData(regbData_id),
        .regcWrite_i(regcWrite_id),
        .regcAddr_i(regcAddr_id),
		.rHiData(rHiData_ex),//md
		.rLoData(rLoData_ex),//md
        .regcData(regcData_ex),
        .regcWrite(regcWrite_ex),
        .regcAddr(regcAddr_ex),
		.op(op_ex),//ls
		.memAddr(memAddr_ex),//ls
		.memData(memData_ex),//ls
		.whi(whi_ex),//md
		.wlo(wlo_ex),//md
		.wHiData(wHiData_ex),//md
		.wLoData(wLoData_ex) //md
    );    

	//新增HiLo寄存器
	HiLo hilo0(
		.rst(rst),
		.clk(clk),
		.wHiData(wHiData_ex),
		.wLoData(wLoData_ex),
		.whi(whi_ex),
		.wlo(wlo_ex),
		.rHiData(rHiData_ex),
		.rLoData(rLoData_ex)
	);

	//新增Mem实例化
	//修改Mem实例化 llsc
	MEM mem0(
        .rst(rst),		
	    .op(op_ex),
	 	.regcData(regcData_ex),
		.regcAddr(regcAddr_ex),
		.regcWr(regcWrite_ex),
		.memAddr_i(memAddr_ex),
		.memData(memData_ex),	
		.rdData(rdData),
		.rLLbit(rLLbit),//llsc
		.regAddr(regAddr_mem),
		.regWr(regWr_mem),
		.regData(regData_mem),	
		.memAddr(memAddr),
		.wtData(wtData),
		.memWr(memWr),	
		.memCe(memCe),
		.wbit(wbit),   //llsc
		.wLLbit(wLLbit)//llsc
	);

	//新增LLbit实例化 llsc
	LLbit llbit0(
		.clk(clk),
		.rst(rst),
		.excpt(excpt),
		.wbit(wbit), 	
		.wLLbit(wLLbit),	
		.rLLbit(rLLbit)
	);

	

	//修改RegFile实例化
    RegFile regfile0(
        .clk(clk),
        .rst(rst),
        //.we(regcWrite_ex),
		.we(regWr_mem),
        //.waddr(regcAddr_ex),
		.waddr(regAddr_mem),
        //.wdata(regcData_ex),
		.wdata(regData_mem),
        .regaRead(regaRead),
        .regbRead(regbRead),
        .regaAddr(regaAddr),
        .regbAddr(regbAddr),
        .regaData(regaData_regFile),
        .regbData(regbData_regFile)
    );

endmodule

9 InstMem 指令存储器

`include "define.v";
//6、指令存储器
module InstMem(
    input wire ce,
    input wire [31:0] addr,
    output reg [31:0] data
);
    reg [31:0] instmem [1023 : 0];    
    always@(*)      
        if(ce == `RomDisable)
          data = `Zero;
        else
          data = instmem[addr[11 : 2]];   
    initial
      begin

		//指令测试
		//初始化数据
		//ori R0,1100 -- R1 --00001100
        instmem [0] = 32'h34011100;
		//ori R0,0020 -- R2 --00000020
        instmem [1] = 32'h34020020;
		//ori R0,ff00 -- R3 --0000ff00
        instmem [2] = 32'h3403ff00;
		//ori R0,ffff -- R4 --0000ffff
        instmem [3] = 32'h3404ffff;
		
		//I型指令测试
/*
		//andi R0,ffff --R5 --00000000
		instmem [4] = 32'h3005ffff;
		//xori R0,ffff --R6 --0000ffff
		instmem [5] = 32'h3806ffff;
		//addi R0,ffff --R7 --ffffffff
		instmem [6] = 32'h2007ffff;
//		//subi R0,ffff --R8 --00000001
//		instmem [7] = 32'h2408ffff;
		//lui  R0,ffff --R9 --ffff0000
		instmem [8] = 32'h3C09ffff;
*/

		
		//R1=00001100 R2=00000020
		instmem [4] = 32'b000000_00001_00010_00101_00000_100000;//add,R5,R1,R2  00001120
		instmem [5] = 32'b000000_00001_00010_00110_00000_100101;//or,R6,R1,R2   00001120

		//R型指令测试
/*
		instmem [6] = 32'b000000_00001_00010_00111_00000_100010;//sub,R7,R1,R2  000010e0
		instmem [7] = 32'b000000_00001_00010_01000_00000_100100;//and,R8,R1,R2  00000000
		instmem [8] = 32'b000000_00001_00010_01001_00000_100110;//xor,R9,R1,R2  00001120

		//lui  R0,ffff --R10 --ffff0000
		instmem [9] = 32'h3C0Affff;

		
		//R11=fffe0000 R12=7fff8000  R13=ffff8000
		// Ra=sa={25'b0,imm[10:6]}
		instmem [10] = 32'b000000_00000_01010_01011_00001_000000;//sll,R11,Ra,R10
		instmem [11] = 32'b000000_00000_01010_01100_00001_000010;//srl,R12,Ra,R10  		
		instmem [12] = 32'b000000_00000_01010_01101_00001_000011;//sra,R13,Ra,R10
*/

		//J- JR型指令测试
/*
		//pc=jaddr=npc(4) offset(26) 00(2)
		//instmem [6] = 32'h08000001;  	//j 1		编码000010  pc=0004 	
		instmem [6] = 32'h0C000002; 	//jal 2		编码000011  pc=0008	r31=npc001c
*/

/*
		//pc=jaddr=(rs)
		instmem [6] = 32'h3407000C;//ori,R7,000C
		//instmem [7] = 32'b000000_00111_00000_00000_00000_001000; //jr R7		编码001000 pc=0000000C
		instmem [7] = 32'b000000_00111_00000_00000_00000_001001; //jalr R7 编码001001 pc=0000000C R31=00000020
*/

/*
		//J+型指令测试
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//R1=00001100 R2=00000020 R3=000000ff R4=0000ffff R5=00001120 R6=00001120
		//instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0000;  //beq r5,r6,0 		编码000100  pc=001C 
		//instmem [6] = 32'b000100_00101_00110_0000_0000_0000_0001;  //beq r5,r6,1 		编码000100  pc=0020 
		//instmem [6] = 32'b000101_00001_00110_1111_1111_1111_1110;  //bne r5,r6,-2 		编码000101  pc=0014 
				
		//instmem [6] = 32'b000001_00010_00000_0000_0000_0000_0001;  //bltz r2,r0,1 		编码000001 pc=0020 
		instmem [6] = 32'b000111_00001_00000_1111_1111_1111_1110;  //bgtz r1,r0,-2 		编码010011 pc=0014 		

		//ori R7,0001 -- R7 --00000001
        instmem [7] = 32'h34070001;	//ori  R7 1
		//ori R8,0001 -- R8 --00000001
        instmem [8] = 32'h34080001;	//ori  R8 1
*/

/*
		//(r1)=0000 1100
		//    +0000 0018
		//addr=0000 1118  
		//    =1000100011000 字节地址
		//    =100 0100 0110 字地址
		//	  =446H	         只有1K空间
		//    =46H		     丢掉了高位的1位
		//    =70
		//mem[70]=(r6)
		instmem[6]=32'b101011_00001_00110_0000_0000_0001_1000; //sw r6,0x18(r1)
		//(r7)=mem[70]
		instmem[7]=32'b100011_00001_00111_0000_0000_0001_1000; //lw r7,0x18(r1)
*/


		//测试12条MIPS指令

/*
		//测试slt
		//R1=00001100 R2=00000020
	  	instmem [6] = 32'b000000_00001_00010_00111_00000_101010;//slt,R7,R1,R2   00000000
		//lui  R0,ffff --R8 --ffff0000
		instmem [7] = 32'h3C08ffff;
		//ori R8,ffff --R8 --ffffffff
		instmem [8] = 32'b001101_01000_01000_1111_1111_1111_1111;
		//lui  R0,ffff --R9 --ffff0000
		instmem [9] = 32'h3C09ffff;
		//ori R9,ffff --R9 --fffffffe
		instmem [10] = 32'b001101_01001_01001_1111_1111_1111_1110;
		//R8=ffffffff(-1) R9=fffffffe(-2)
	  	instmem [11] = 32'b000000_01001_01000_01010_00000_101010;//slt,R10,R9,R8   00000001
*/

/*
		//测试乘除
		//R1=00001100 R2=00000020 
		//multu,R1,R2 0_22000
		instmem [6] = 32'b000000_00001_00010_00111_00000_011001;//multu,R1,R2
		//ori R7,ffff -- R7 --0000ffff
        instmem [7] = 32'h3407ffff;	//ori  R7 ffff
		//sll R7,R7,10h -- R7 --ffff0000
        instmem [8] = 32'b000000_00000_00111_00111_10000_000000;//sll R7,R7,10h
		//mult R7,R2  	ffffffff_ffe00000
        instmem [9] = 32'b000000_00111_00010_00000_00000_011000;//mult R7,R2
		//divu r1,r2	88_0
        instmem [10] = 32'b000000_00001_00010_00000_00000_011011;//divu r1,r2
		//div r3,r2 	fffff800_0
        instmem [11] = 32'b000000_00111_00010_00000_00000_011010;//div r7,r2
*/

/*
		//测试剩余4条指令
		//R1=00001100 R2=00000020 
		//mthi,R1--hi=00001100
		instmem [6] = 32'b000000_00001_00000_00000_00000_010001;//mthi,R1
		//mtlo,R2--lo=00000020 
		instmem [7] = 32'b000000_00010_00000_00000_00000_010011;//mtlo,R2
		//mfhi,R7--R7=00001100
		instmem [8] = 32'b000000_00000_00000_00111_00000_010000;//mfhi,R7
		//mflo,R8--R8=00000020 
		instmem [9] = 32'b000000_00000_00000_01000_00000_010010;//mflo,R8
*/


		//测试原子指令

		//计算地址说明
		//(r1)=0000 1100
		//    +0000 0020
		//addr=0000 1120  
		//    =1000100100000 字节地址
		//    =100 0100 1000 字地址
		//	  =448H	         只有1K空间
		//    =48H		     丢掉了高位的1位
		//    =72
		//mem[72]<-->(r7)



		//测试功能
		//R1=00001100 R2=00000020 
		//Lpt: 	LL r7,0x20(r1)		//读取程序里的信号量,LLibt=1
		//ll r7,0x20(r2) --(r7)=mem[72]=0
		instmem [6] = 32'b110000_00001_00111_0000_0000_0100_0000;//ll r7,0x20(r1)
		//if(r7 == clearFlag)	//判断信号是否被占用,为clearFlag表示没占用
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//bne,r7,r0,else(+4)
		instmem [7] = 32'b000101_00111_00000_0000_0000_0000_0100;//bne,r7,r0,else(+4)
		//{
		//	MOV r7, setFlag			//设置本程序的占用标志
		//ori R7,ffff -- R7 --0000ffff
        instmem [8] = 32'h3407ffff;	//ori  R7 ffff
		//	SC r7, 0x20(r1)			//设置到信号量里
		instmem [9] = 32'b111000_00001_00111_0000_0000_0100_0000;//sc r7,0x20(r1)
		//	if(r7 == 1) goto Success//如果信号量设置成功,r1就会为1
		//pc=jaddr=npc+S14 offset(16) 00(2)
		//bne,r1,r0,Success(+2)
		instmem [10] = 32'b000101_00111_00000_0000_0000_0000_0010;//bne,r7,r0,Success(+2)
		//	//如果信号量没有设置成功,重新读信号量,即重新执行LL指令
		//	else goto Lpt
		//j Lpt(6)
		//pc=jaddr=npc(4) offset(26) 00(2)	
		instmem [11] = 32'h08000006;//j Lpt(6) 编码000010  pc=0018 
		//}
		//else goto Lpt
		//j Lpt(6)
		//pc=jaddr=npc(4) offset(26) 00(2)	
		instmem [12] =  32'h08000006;//j Lpt(6) 编码000010  pc=0018 
		//Success:
		//	访问指定的存储区域
		//	set r7,clearFlag
		//andi R7,0000 -- R7 --00000000
        instmem [13] = 32'h30070000;	//andi R7,0000
		//	lw r7,(0x20)r1
		instmem[14]=32'b100011_00001_00111_0000_0000_0010_0000; //lw r7,0x20(r1)


      end
endmodule

最后

2023-5-23 16:41:01

2023-5-25 00:23:18

你对我百般注视,
并不能构成万分之一的我,
却是一览无余的你。

祝大家逢考必过
点赞收藏关注哦文章来源地址https://www.toymoban.com/news/detail-500317.html

到了这里,关于4实现中断异常相关指令-1【FPGA模型机课程设计】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 6设计指令流水线-1【FPGA模型机课程设计】

    2023-5-25 09:25:05 以下内容源自《【FPGA模型机课程设计】》 仅供学习交流使用 0集中实践环节计划书【FPGA模型机课程设计】 2023-5-30 16:03:03 添加MEM_WB模块 2023-5-30 19:00:25 IF模块添加stall 2023-5-30 21:08:26 修改stall相关的处理 在id ctrl 流水寄存器中修改 因为原来没有理解stall[5:0]是什么

    2024年02月08日
    浏览(49)
  • 5模型机整体的联调【FPGA模型机课程设计】

    2023-5-25 08:15:05 以下内容源自《【FPGA模型机课程设计】》 仅供学习交流使用 0集中实践环节计划书【FPGA模型机课程设计】 第一周周五: 模型机整体的联调。完成模型机指令系统实现。学生根据设计好的指令系统实现方案,在Modelsim上进行功能仿真。要求将所有设计的机器指令

    2024年02月08日
    浏览(40)
  • 2模型计算机各功能电路设计【FPGA模型机课程设计】

    2023-5-22 10:18:30 以下内容源自《【FPGA模型机课程设计】》 仅供学习交流使用 0集中实践环节计划书【FPGA模型机课程设计】 简单的指令设计 MIPS CPU 设计【计算机组成原理】 详细的指令设计 MIPS CPU 设计+【计算机组成原理】 测试结果具体分析可以查看: 实验三+ I型指令设计实验

    2024年02月07日
    浏览(41)
  • 单周期-开发过程【FPGA模型机课程设计】

    2023-5-25 08:24:28 以下内容源自《【FPGA模型机课程设计】》 仅供学习交流使用 0集中实践环节计划书【FPGA模型机课程设计】 工程迭代过程 README.txt 1FPGA模型计算机整体方案设计【FPGA模型机课程设计】 2模型计算机各功能电路设计【FPGA模型机课程设计】 实现基本20条指令 3模型机

    2024年02月09日
    浏览(46)
  • 电子技术课程设计基于FPGA的音乐硬件演奏电路的设计与实现

    【ChatGPT】前些天发现了一个巨牛的人工智能学习电子书,通俗易懂,风趣幽默,无广告,忍不住分享一下给大家。(点击查看学习资料) wx供重浩:创享日记 对话框发送:乐曲电路 免费获取完整无水印论文报告(包含电路图) 1、课程设计题目 设计一个乐曲演奏电路,能够

    2024年02月05日
    浏览(66)
  • ARMv8-A 与异常相关的指令

    最近一直在学习 ARMv8-A 的东西,记录一下与异常相关的指令。下面的内容基于AArch64讨论,暂不考虑 AArch32。 与异常生成相关的指令如下所示。下面主要学习 SVC 和 HVC 。 1. SVC SVC (Supervisor Call) 产生一个路由到 EL1 的异常,可以调用系统服务这些。此时, ESR_ELx.EC = 0x15 。 2. HVC

    2024年02月21日
    浏览(49)
  • LLMs:ColossalChat相关的开源训练数据集简介(SFT指令微调数据集+奖励模型排序数据集+RLHF数据集)、RLHF算法实现的三个阶段(监督指令微调→训练奖励模型→RLHF训练模型→​​​

    LLMs:ColossalChat相关的开源训练数据集简介(SFT指令微调数据集+奖励模型排序数据集+RLHF数据集)、RLHF算法实现的三个阶段(监督指令微调→训练奖励模型→RLHF训练模型→推理量化和服务)   目录 ColossalChat的使用方法 1、ColossalChat相关的开源训练数据集 (1)、SFT指令微调数据集

    2024年02月14日
    浏览(43)
  • FPGA课程设计--电子门锁的设计

      这是一个关于FPGA的课程设计【只是一个简单的课程设计,并没有涉及很深的FPGA技术知识】,实物测试结果可以参考 FPGA课程设计-电子门锁   视频中使用的板子是睿智助学的开发板,芯片型号为 EP4CE6E22C8 。大家如果用的是其他开发板也可以参考本文章。除了芯片的资源

    2024年02月04日
    浏览(33)
  • 【FPGA】课程设计:简单计时器闹钟

    本文是EDA实验的课程设计 完整源码文件获取方式见文末 少废话,先看东西。 EDA实验-闹钟演示视频 设计一个电子闹钟。要求电路上电后自动计时,到达预置的闹响时刻后,由蜂鸣器发出音乐报警。闹响时刻可利用按键设置,设置范围0~999999。 此次实验除了满足上述基本功能

    2024年02月04日
    浏览(47)
  • 数字系统设计(FPGA)课程设计: 多功能数字钟

    一、目的: 实现多功能数字钟,具备下列功能: 1、数字钟:能计时,实现小时、分钟、秒的显示; 2、数字跑表:精度至0.01秒 比如显示12.97秒; 3、闹钟: 可以设定闹钟,用试验箱上的蜂鸣器作为闹铃; 4、调时:可以对时间进行设定; 5、日期设定:能设定日期并显示当前

    2023年04月18日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包