【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」透彻剖析贯穿RocketMQ的消息消费长轮训机制体系的原理分析

这篇具有很好参考价值的文章主要介绍了【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」透彻剖析贯穿RocketMQ的消息消费长轮训机制体系的原理分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

DefaultMQPushConsumer

使用系统控制读取操作的DefaultMQPushConsumer可以自动调用传入的处理方法来处理收到的消息。通过设置各种参数和传入处理消息的函数,使用DefaultMQPushConsumer的主要目的是方便配置和处理消息。在收到消息后,系统会自动保存Offset,并且如果加入了新的DefaultMQPushConsumer,系统会自动做负载均衡。

RocketMQ的消息模式

RocketMQ提供Clustering和Broadcasting两种消息模式。

  • Clustering模式下,ConsumerGroup内每个Consumer只消费所订阅消息的一部分,而所有Consumer消费内容合在一起构成Topic内容,实现负载均衡。

  • Broadcasting模式下,同一ConsumerGroup内每个Consumer都接收所订阅Topic的全部消息,每个消息分发给多个Consumer消费。

推模式的的案例代码

使用 DefaultMQPushConsumer 可以自动控制读取操作,收到消息后会自动调用传入的处理方法进行处理,并且自动保存 Offset。主要需要设置好各种参数以及传入处理消息的函数。当加入新的 DefaultMQPushConsumer 后,系统会自动进行负载均衡。

public class DefaultMQPushConsumerSample {

    public static void main(String[] args) throws MQClientException {
        // Consumer 的 GroupName 用于把多个 Consumer 组织到一起,提高并发处理能力,GroupName 需要和消息模式( MessageModel) 配合使用。
        DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name");
        // NameServer 的地址和端口号,可以填写多个,用分号隔开,达到消除单点故障的目的,比如“ip1:port;ip2:port;ip3:port”。
        consumer.setNamesrvAddr("127.0.0.1:9876");
        /* Specify where to start in case the specified Consumer group is a brand new one. */
        consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);
        consumer.setMessageModel(MessageModel.BROADCASTING);
        /* Subscribe one more more Topics to consume. */
        // Topic 名称用来标识消息类型,需要提前创建。
        // 如果不需要消费某个 Topic 下的所有消息,可以通过指定消息的 Tag 进行消息过滤,
        // 比如:Consumer.subscribe("TopicTest","tag1||tag2||tag3"),表示这个 Consumer 要消费“TopicTest”下带有tag1或tag2或tag3的消息
        // ( Tag 是在发送消息时设置的标签)。在填写 Tag 参数的位置, 用 null 或者“*” 表示要消费这个 Topic 的所有消息。
        consumer.subscribe("TopicTest", "*");
        /* * Register callback to execute on arrival of Messages fetched from brokers. */
        consumer.registerMessageListener(
                (MessageListenerConcurrently) (msgs, context) -> {
                    System.out.printf(Thread.currentThread().getName() + " Receive New Messages: " + msgs + "%n");
                    System.out.println();
                    return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
                });
        /* * Launch the Consumer instance.*/
        consumer.start();
    }
}

DefaultMQPushConsumer 的处理流程

DefaultMQPushConsumer 的主要功能是由 DefaultMQPushConsumerImpl 类实现的。消息的处理逻辑在 pullMessage 函数中的 PullCallBack 中完成。PullCallBack 函数里有一个 switch 语句,根据从 Broker 返回的消息类型进行相应的处理。

com.alibaba.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage

PullCallback pullCallback = new PullCallback() {
    public void onSuccess(PullResult pullResult) {
        if (pullResult != null) {
            pullResult = DefaultMQPushConsumerImpl.this.pullAPIWrapper.processPullResult(pullRequest.getMessageQueue(), pullResult, subscriptionData);
            switch(pullResult.getPullStatus()) {
            case FOUND:
            	// 省略代码
                break;
            case NO_NEW_MSG:
            	// 省略代码
                break;
            case NO_MATCHED_MSG:
            	// 省略代码
                break;
            case OFFSET_ILLEGAL:
                // 省略代码
            }
        }
    }
    public void onException(Throwable e) {
        if (!pullRequest.getMessageQueue().getTopic().startsWith("%RETRY%")) {
            DefaultMQPushConsumerImpl.this.log.warn("execute the pull request exception", e);
        }
        DefaultMQPushConsumerImpl.this.executePullRequestLater(pullRequest, 3000L);
    }
};
长轮询

DefaultMQPushConsumer 中通过使用“PullRequest”以“长轮询”(long polling)方式实现了 Push 效果。长轮询方式既保留了 Pull 的好处,又具有 Push 方式的实时性。在长轮询中,客户端的请求权力仍然掌握在 Consumer 手中,即使 Broker 有大量消息积压,也不会主动推送给 Consumer。长轮询方式的局限性是需要占用资源来维护客户端的请求,因此适合在消息队列等客户端连接数可控的场景中使用。

Push 方式是 Server 端接收到消息后主动将消息推送给 Client 端,这种方式实时性强。然而对于提供队列服务的 Server 来说,用 Push 方式主动推送会增加 Server 端的工作量,从而影响 Server 的性能;而且 Client 的处理能力不同,Client 的状态也不受 Server 控制,如果 Client 不能及时处理 Server 推送过来的消息,就会出现潜在问题。

Pull 方式是 Client 端循环地从 Server 端拉取消息,主动权在 Client 手中,自己拉取到一定数量的消息后,再进行处理。Pull 方式的问题在于循环拉取消息的间隔不好设定,间隔太短会导致一种“忙等”状态,浪费资源;而每个 Pull 的时间间隔太长会导致 Server 端有更多的消息到来而没有被及时处理。

长轮询方式通过 Client 端和 Server 端的合作,既保留了 Pull 的优点,又在保证实时性方面达到了目的。

com.alibaba.rocketmq.client.impl.consumer.PullAPIWrapper#pullKernelImpl

PullMessageRequestHeader requestHeader = new PullMessageRequestHeader();
requestHeader.setConsumerGroup(this.consumerGroup);
requestHeader.setTopic(mq.getTopic());
requestHeader.setQueueId(mq.getQueueId());
requestHeader.setQueueOffset(offset);
requestHeader.setMaxMsgNums(maxNums);
requestHeader.setSysFlag(sysFlagInner);
requestHeader.setCommitOffset(commitOffset);
requestHeader.setSuspendTimeoutMillis(brokerSuspendMaxTimeMillis);
requestHeader.setSubscription(subExpression);
requestHeader.setSubVersion(subVersion);
String brokerAddr = findBrokerResult.getBrokerAddr();
if (PullSysFlag.hasClassFilterFlag(sysFlagInner)) {
    brokerAddr = this.computPullFromWhichFilterServer(mq.getTopic(), brokerAddr);
}
PullResult pullResult = this.mQClientFactory.getMQClientAPIImpl().
	pullMessage(brokerAddr, requestHeader, timeoutMillis, communicationMode, pullCallback);

requestHeader.setSuspendTimeoutMillis(brokerSuspendMaxTimeMillis) 的作用是设置 Broker 的最长阻塞时间,其默认设置是 15 秒,但需注意仅当 Broker 没有新消息时才会被阻塞,如果有新消息则会立即返回。

“长轮询” 服务端代码

从 Broker 的源码中可以看出,服务端在接收到新的消息请求后,并不会急于返回,而是通过一个循环状态不断地查看队列中是否有新消息。每次查看状态时,会暂停一段时间(默认为 5 秒),然后再次进行检查。在默认情况下,当 Broker 没有新的消息时,第三次检查时,若等待时间超过 Request 中设定的 Broker-SuspendMaxTimeMillis,会返回一个空结果。

if (this.brokerController.getBrokerConfig().isLongPollingEnable()){
    this.waitForRunning( 5 * 1000); 
} else {
  this.waitForRunning(this.brokerController.getBrokerConfig().getShortPollingTimeMills()); 
}
long beginLockTimestamp = this.systemClock.now(); 
this.checkHoldRequest(); 
long costTime = this.systemClock.now() - beginLockTimestamp; 
if (costTime > 5 * 1000) { 
    Log. info("[ NOTIFYME] check hold request cost {} ms.", costTime); 
}

在等待的过程中,一旦 Broker 收到新的消息,就会立即调用 notifyMessageArriving 函数并返回请求结果。"长轮询"的核心是,Broker 会暂时地保留客户端请求,在这段时间内如果有新的消息到达,则可以不用创建新的连接,而是利用现有的连接立刻返回消息给 Consumer。

messageQueue和processQueue

PullRequest中定义了messageQueue和processQueue。

processQueue

processQueue是一个快照类,在PushConsumer运行时,每个MessageQueue都会有一个对应的ProcessQueue对象,用于保存该MessageQueue消息处理状态的快照。

ProcessQueue对象主要包含一个TreeMap和一个读写锁。TreeMap以Message Queue的Offset作为Key,以消息内容的引用为Value,保存了所有从MessageQueue获取到但还未被处理的消息;读写锁控制着多个线程对TreeMap对象的并发访问。

在pull逻辑中,PushConsumer会判断获取但还未处理的消息个数、消息总大小、Offset的跨度,如果有任何一个值超过了设置的大小,则会隔一段时间再拉取消息,以达到流量控制的目的。此外,ProcessQueue还可以辅助实现顺序消费的逻辑。相应代码如下:

com.alibaba.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage

PushConsumer会判断获取但还未处理的消息个数
long size = processQueue.getMsgCount().get();
if (size > (long)this.defaultMQPushConsumer.getPullThresholdForQueue()) {
    this.executePullRequestLater(pullRequest, 50L);
    if (this.flowControlTimes1++ % 1000L == 0L) {
        this.log.warn("the consumer message buffer is full, so do flow control, minOffset={}, maxOffset={}, size={}, pullRequest={}, flowControlTimes={}", new Object[]{processQueue.getMsgTreeMap().firstKey(), processQueue.getMsgTreeMap().lastKey(), size, pullRequest, this.flowControlTimes1});
    }
}
消息总大小、Offset的跨度
if (!this.consumeOrderly) {
        if (processQueue.getMaxSpan() > (long)this.defaultMQPushConsumer.getConsumeConcurrentlyMaxSpan()) {
            this.executePullRequestLater(pullRequest, 50L);
            if (this.flowControlTimes2++ % 1000L == 0L) {
                this.log.warn("the queue's messages, span too long, so do flow control, minOffset={}, maxOffset={}, maxSpan={}, pullRequest={}, flowControlTimes={}", new Object[]{processQueue.getMsgTreeMap().firstKey(), processQueue.getMsgTreeMap().lastKey(), processQueue.getMaxSpan(), pullRequest, this.flowControlTimes2});
            }

            return;
        }
    }
ProcessQueue对象主要包含一个TreeMap和一个读写锁
 else {
        if (!processQueue.isLocked()) {
            this.executePullRequestLater(pullRequest, 3000L);
            this.log.info("pull message later because not locked in broker, {}", pullRequest);
            return;
        }

        if (!pullRequest.isLockedFirst()) {
            long offset = this.rebalanceImpl.computePullFromWhere(pullRequest.getMessageQueue());
            boolean brokerBusy = offset < pullRequest.getNextOffset();
            this.log.info("the first time to pull message, so fix offset from broker. pullRequest: {} NewOffset: {} brokerBusy: {}", new Object[]{pullRequest, offset, brokerBusy});
            if (brokerBusy) {
                this.log.info("[NOTIFYME]the first time to pull message, but pull request offset larger than broker consume offset. pullRequest: {} NewOffset: {}", pullRequest, offset);
            }

            pullRequest.setLockedFirst(true);
            pullRequest.setNextOffset(offset);
        }
    }

内容总结

DefaultMQPushConsumer使用长轮训技术,让consumer不断向broker端请求消息,如果没有可消费的消息,则阻塞一段时间,等待broker推送消息给consumer。具体实现过程为,先每隔一段时间从broker获取消息进行消费,如果没有需要消费的消息,则调用poll函数向远程broker获取最新的消息,最长等待时间为Consumer的maxTimeConsumeConitnusly属性,如果超时时间到达还没有新的消息,则返回null。这种方式实现实时更新消息且对于broker的开销较小,但会导致consumer不断发起请求,增加网络负载和调用次数。因此需要合理设置长轮询的超时时间。文章来源地址https://www.toymoban.com/news/detail-500633.html

到了这里,关于【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」透彻剖析贯穿RocketMQ的消息消费长轮训机制体系的原理分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《深入浅出SSD:固态存储核心技术、原理与实战》----学习记录(二)

    SSD主要由两大模块构成—— 主控和闪存介质 。其实除了上述两大模块外,可选的还有缓存单元。主控是SSD的大脑,承担着指挥、运算和协调的作用,具体表现在 一是实现标准主机接口与主机通信 二是实现与闪存的通信 三是运行SSD内部FTL算法 可以说,一款主控芯片的好坏直

    2024年02月12日
    浏览(43)
  • 【大虾送书第七期】深入浅出SSD:固态存储核心技术、原理与实战

    目录  ✨写在前面   ✨内容简介  ✨作者简介  ✨名人推荐  ✨文末福利      🦐博客主页:大虾好吃吗的博客      🦐专栏地址:免费送书活动专栏地址         近年来国家大力支持半导体行业,鼓励自主创新,中国SSD技术和产业良性发展,产业链在不断完善,与

    2024年02月10日
    浏览(45)
  • 深入浅出FISCO BCOS:区块链底层平台

        苏泽 大家好 这里是苏泽 一个钟爱区块链技术的后端开发者 本篇专栏  ← 持续记录本人自学两年走过无数弯路的智能合约学习笔记和经验总结 如果喜欢拜托三连支持~ 目录 我前面有补充相关的区块链的知识 如果没有了解的话 可能部分概念或名词会不懂哦 建议先了解一

    2024年03月16日
    浏览(57)
  • K8s项目实战笔记获阿里技术大咖力荐,深入浅出解读容器编排原理与应用

    一、前言 Kubernetes,简称K8s,宛如一位技艺高超的舞台导演,优雅地指挥着容器集群的华丽表演。它不仅仅是一个开源的容器集群管理系统,更是自动化部署、智能扩缩容与维护等功能的集大成者。作为领军的容器编排工具,Kubernetes展现了基于容器技术的分布式架构的无尽魅

    2024年03月10日
    浏览(43)
  • 【深入浅出Docker原理及实战】「原理实战体系」零基础+全方位带你学习探索Docker容器开发实战指南(Docker-compose使用全解 一)

    Docker Compose是一款用于定义和运行复杂应用程序的Docker工具。在使用Docker容器的应用中,通常由多个容器组成。使用Docker Compose可以摆脱使用shell脚本来启动容器的繁琐过程。 Compose通过一个配置文件来管理多个Docker容器。在配置文件中,我们使用services来定义所有的容器。然后

    2024年01月17日
    浏览(60)
  • 【深入浅出Spring原理及实战】「夯实基础系列」360全方位渗透和探究Spring的核心注解开发和实现指南(Spring5的常见的注解)

    Spring 5.x中常见的注解包括@Controller、@Service、@Repository。当我们研究Spring Boot源码时,会发现实际上提供了更多的注解。了解这些注解对于我们非常重要,尽管目前可能还用不到它们。 注解 功能 @Bean 器中注册组件,代替来的标签 @Configuration 声明这是一个配置类,替换以前的配

    2024年02月16日
    浏览(37)
  • 论文解读:Bert原理深入浅出

    摘取于https://www.jianshu.com/p/810ca25c4502 任务1:Masked Language Model Maked LM 是为了解决单向信息问题,现有的语言模型的问题在于,没有同时利用双向信息,如 ELMO 号称是双向LM,但实际上是两个单向 RNN 构成的语言模型的拼接,由于时间序列的关系,RNN模型预测当前词只依赖前面出

    2024年02月11日
    浏览(37)
  • 深入浅出:Zookeeper的原理与实践

    在当今的信息时代,分布式系统的应用越来越广泛,而其中一个至关重要的组成部分就是Zookeeper。作为一个分布式协调服务,Zookeeper在保障分布式系统的一致性、可靠性和可用性方面发挥着不可替代的作用。本博客旨在深入浅出地探讨Zookeeper的原理与实践,帮助读者全面理解

    2024年04月11日
    浏览(37)
  • 深入浅出Java中参数传递的原理

    今天,想和大家聊聊关于java中的参数传递的原理,参数的传递有两种,值传递和引用传递。 值传递 :是指在调用函数时将实际参数复制一份传递到函数中,这样在函数中如果对参数进行修改,将不会影响到实际参数。 引用传递 :是指在调用函数时将实际参数的地址传递到

    2024年02月01日
    浏览(57)
  • 深入浅出讲解自动驾驶 - 激光雷达原理和结构简介

    💂 个人主页 : 同学来啦 🤟 版权 : 本文由【同学来啦】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助, 欢迎关注、点赞、收藏和订阅专栏哦 激光雷达最先应用于海洋深度探测领域,其实现思路是通过相同回波之间的时间差实现海洋深度测算。后来不断演

    2024年02月16日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包