基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

这篇具有很好参考价值的文章主要介绍了基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

摘要:由于近年来民用和军事领域对无人机的兴趣日益浓厚,自主微型飞行机器人的研究得到了极大的加强。本文总结了OS4项目建模和控制部分的最终成果,重点是四旋翼飞行器的设计和控制。介绍了考虑车辆运动引起的气动系数变化的仿真模型。利用该模型得到的控制参数在不重新整定的情况下成功地应用于直升机。本文的最后一部分描述了控制方法(积分反演)和我们提出的四旋翼飞行器(姿态、高度和位置)的完全控制方案。

最后给出了自主起飞、悬停、着陆和避碰的结果。

原文摘要:

Abstract— The research on autonomous miniature flying robots has intensified considerably thanks to the recent growth of civil and military interest in Unmanned Aerial Vehicles
(UAV). This paper summarizes the final results of the modeling and control parts of OS4 project, which focused on design and control of a quadrotor. It introduces a simulation model which takes into account the variation of the aerodynamical coefficients due to vehicle motion. The control parameters found with this model are successfully used on the helicopter without re-tuning. The last part of this paper describes the control approach (Integral Backstepping) and the scheme we propose for full control of quadrotors (attitude, altitude and position). Finally, the results of autonomous take-off, hover, landing and
collision avoidance are presented.

对以下内容进行了建模: - 四旋翼动力学
- 电机动力学 - 用于状态估计的卡尔曼滤波 - 简单的传感器模型/ADC转换
以下内容未建模:

- 螺旋桨动力学

- 控制规律

- 动力子系统

此SIM卡可用于:
- 系统可行性研究
- 系统性能评估和权衡
- 控制律性能评估

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

📚2 运行结果

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

 基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

 基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

 基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

部分代码:

%% simulation set up
step_time = 0.5;                       % simulation step time(sec)
end_time  = 1000;                   % simulation end time (sec)
%end_time  = 86400;
%% attitude estimator gains
Tatd  = 0.5;                          % attitude estimator update time (sec)
Tqint = 0.5;                         % discrete quaternion integration period (sec)
Tsen_out = 0.5;                      % sensor output period (sec)
TkfProp = 0.5;                       % Kalman filter propagation period (sec)
KfupdatePeriodInCycle = 1;           % Kalman filter update period (propagation cycle)
f_bw_atd = 0.02;                     % attitude determination bandwidth (hz)
%f_bw_atd = 0.005;
zeta = 0.7;
Krp =  (2*pi*f_bw_atd)^2 * eye(3);
Kpp =  2*zeta*2*pi*f_bw_atd*eye(3);
qest0 = [0*1e-4; 0; 0; 1];                          % initial estimator quaternion
delta_west0 = zeros(3,1);                           % initial deviation of estimator angular rate (rad/sec)
max_delta_w = 0.1*pi/180;
delta_w_lim = 2e-4; %0.1/pi/Tqint;
delta_th_lim= 1e-4; %0.1*pi/180/Tqint;
q0 = [0; 0; 0; 1];   

%% for estimate error standard deviation prediction calculation
wn=sqrt(diag(Krp));
k=sqrt((wn.^4+4*zeta^2)./(4*zeta*wn));
%% for using Lyapunove equation to solve for expected estimation error
C=[1 0];  K=[Kpp(1,1);Krp(1,1)];      A=[0    1;0 0]-K*C; B=K; 
H=[1 0];  K=[Kpp(1,1);Krp(1,1)]*Tatd; F=[1 Tatd;0 1]-K*H; G=K;
%% Kalman filter setups
Fmat = [eye(3) TkfProp*eye(3);zeros(3,3) eye(3)];
Hmat = [eye(3)  zeros(3,3)];
therr0 = max([abs(qest0(1:3)); 5*1e-4]);  % initial error estimate, assuming q0=[0 0 0 1]
P0 = diag([therr0^2*ones(1,3) 3e-6^2*ones(1,3)]);
R = TkfProp*KfupdatePeriodInCycle*diag(position_uncertainty_var);%1e-3^2*eye(3)*
Q = diag([1e-5^2*ones(1,3), 1e-7^2*ones(1,3)])*TkfProp;
max_rate = pi/180;
P0 = diag([1e-32*ones(1,3) 1e-5^2*ones(1,3)]);
Q = diag([1e-5^2*ones(1,3), 5e-6^2*ones(1,3)])*TkfProp;
max_bias = 1*pi/180/3600;
%% start simulation
Tcapt = Tsen_out;                              % sim variable capture rate (sec)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)文章来源地址https://www.toymoban.com/news/detail-500940.html

🌈4 Matlab代码实现

到了这里,关于基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于卡尔曼滤波的信号处理以及图像追踪Python实现

    这篇文章将由浅入深,从最简单的信号处理开始,到计算机视觉图像跟踪的应用。该文章使用Python语言,在进行视觉处理时,并未使用opencv自带的api,而是从矩阵运算进行逐步处理,更易于理解。 网上现在能看到的原理解释都很详细,这里就不多介绍。本人理解卡尔曼滤波的

    2024年02月05日
    浏览(55)
  • 【算法】基于STM32的MPU6050卡尔曼滤波算法(入门级)

    卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。详情见:卡尔曼滤波简介 MPU6050的解算主要有三种姿态融合算法:

    2024年02月01日
    浏览(54)
  • 卡尔曼滤波简介 —— 一维卡尔曼滤波

            在本章中,我们将在一个维度上推导出卡尔曼滤波。本章的主要目标是简单直观地解释卡尔曼滤波的概念,而不使用可能看起来复杂和令人困惑的数学工具。         我们将逐步推进卡尔曼滤波方程。         在本章中,我们推导出没有过程噪声的卡尔曼

    2024年02月09日
    浏览(42)
  • 【状态估计】卡尔曼滤波器、扩展卡尔曼滤波器、双卡尔曼滤波器和平方根卡尔曼滤波器研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文包括

    2024年02月08日
    浏览(48)
  • 基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 MATLAB2022a         随着传感器网络技术的不断发展,目标跟踪作为其核心应用之一,在军事、民用等领域中得到了广泛的关注。扩展卡尔曼滤波(EKF)作为一种有效的非线性滤

    2024年02月22日
    浏览(77)
  • 基于卡尔曼滤波检测GNSS 数据中的智能手机位移附matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年04月25日
    浏览(37)
  • 【ARMA仿真】基于matlab ARMA模型卡尔曼滤波【含Matlab源码 2431期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇

    2024年02月10日
    浏览(42)
  • 卡尔曼滤波(KF)和扩展卡尔曼滤波(EKF)相应推导

    从上个世纪卡尔曼滤波理论被提出,卡尔曼滤波在控制论与信息论的连接上做出了卓越的贡献。为了得出准确的下一时刻状态真值,我们常常使用卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波等等方法,这些方法在姿态解算、轨迹规划等方面有着很多用途。卡尔

    2024年02月03日
    浏览(66)
  • 【状态估计】基于线性卡尔曼滤波器和粒子滤波器无人机估计地形高度(Matlab代码实现)

      💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文模

    2024年02月16日
    浏览(46)
  • 卡尔曼滤波理论小释之卡尔曼增益

    卡尔曼增益是卡尔曼滤波理论中的一个核心概念。一般教材里面是这么给出它的公式的: 图1  卡尔曼增益 直觉上容易理解,所谓的增益是指每次融合数据后不确定性的变化程度。如果融合了新的数据后不确定性降低了,那么这个增益就是正面的,有助于提高预测的准确度。

    2024年02月05日
    浏览(85)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包