最优控制 3:最优控制理论中的极小值原理与动态规划

这篇具有很好参考价值的文章主要介绍了最优控制 3:最优控制理论中的极小值原理与动态规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

经典变分法是一种特别强大的工具,但是它要求控制量必须可导且无界,这在很多问题中都是不成立的。着陆器的软着陆,卫星的姿态控制,等等。从主观上都可以分析出来,着陆器的软着陆控制,肯定是先让着陆器自由落体,然后从某一个高度开始反向喷气,最后落地一瞬间速度刚好为0。卫星的姿态控制肯定是当姿态有偏差时,用最大力矩控制一次,然后让卫星通过惯性 “转” 一段时间再反向最大力矩控制一次。这个过程控制量肯定是不可导的。

因此,有很多最优控制问题,不能用变分法解决。所以,极小值原理和动态规划是比变分法更强大的工具。本文将介绍这两种理论,下一篇博客将给出变分法、极小值原理和动态规划在解决最优控制问题时的等价性推导。(当然,前提是这个最优控制问题本身可以用三种方法去解决才行;如果某个问题不能用变分法,那谈等价性是没有意义的。)

极小值原理

在计算和使用的时候,极小值原理和变分法的公式很相似,只不过在哈密顿函数上做了改变。因为 u u u 可能不可导,所以就没有 ∂ H ∂ u = 0 \frac{\partial H}{\partial u}=0 uH=0 了,而是用别的方程或不等式去约束。下面直接通过一个问题的形式给出极小值原理。

问题:
min ⁡ u ( t ) ∈ Ω J = φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t s . t . x ˙ ( t ) = f [ x ( t ) , u ( t ) , t ] , x ( t 0 ) = x 0 , ψ [ x ( t f ) , t f ] = 0 \begin{align} \begin{aligned} & \min_{u(t)\in\Omega}{J=\varphi\left[x(t_f),t_f\right]+\int_{t_0}^{t_f}{L\left[x(t), u(t), t\right]}dt}\\ & s.t.\quad \dot{x}(t)=f\left[x(t), u(t), t\right], x(t_0)=x_0,\psi\left[x(t_f), t_ f\right]=0 \end{aligned} \end{align} u(t)ΩminJ=φ[x(tf),tf]+t0tfL[x(t),u(t),t]dts.t.x˙(t)=f[x(t),u(t),t],x(t0)=x0,ψ[x(tf),tf]=0

由极小值原理,该问题实现最优控制的必要条件是:

  1. 最优状态 x ∗ ( t ) x^*(t) x(t) 和最优协状态 λ ∗ ( t ) \lambda^*(t) λ(t) 满足正则方程 (这里与变分法是一样的)
    λ ˙ ∗ ( t ) = − ∂ H ( x ∗ , u ∗ , λ ∗ , t ) ∂ x x ˙ ( t ) = ∂ H ( x ∗ , u ∗ , λ ∗ , t ) ∂ λ = f [ x ∗ ( t ) , u ∗ ( t ) , t ] \begin{align} \begin{aligned} \dot{\lambda}^*(t)&=-\frac{\partial H(x^*,u^*,\lambda^*,t)}{\partial x}\\ \dot{x}(t)&=\frac{\partial H(x^*,u^*,\lambda^*,t)}{\partial \lambda}=f\left[x^*(t),u^*(t), t\right] \end{aligned} \end{align} λ˙(t)x˙(t)=xH(x,u,λ,t)=λH(x,u,λ,t)=f[x(t),u(t),t]
    其中, H ( x , u , λ , t ) = L [ x ( t ) , u ( t ) , t ] + λ T ( t ) f [ x ( t ) , u ( t ) , t ] H(x,u,\lambda,t)=L\left[x(t), u(t), t\right]+\lambda^T(t)f\left[x(t), u(t), t\right] H(x,u,λ,t)=L[x(t),u(t),t]+λT(t)f[x(t),u(t),t] 为哈密顿函数。
  2. 在最优状态 最优控制 以及最优协变量上,对应的哈密顿函数取得最小值
    Tips: 这里与变分法不一样了,因为 ∂ H ∂ u = 0 \frac{\partial H}{\partial u}=0 uH=0 不一定成立。一方面,导数不一定存在;另一方面,极值点对应的 u u u 不一定在容许控制范围内。
    H ( x ∗ ( t ) , u ∗ ( t ) , λ ∗ ( t ) , t ) = min ⁡ u ( t ) ∈ Ω H ( x ∗ ( t ) , u ( t ) , λ ∗ ( t ) , t ) \begin{align} \begin{aligned} H(x^*(t), u^*(t), \lambda^*(t) ,t)=\min_{u(t)\in\Omega}{H(x^*(t), u(t), \lambda^*(t) ,t)} \end{aligned} \end{align} H(x(t),u(t),λ(t),t)=u(t)ΩminH(x(t),u(t),λ(t),t)
  3. 边界条件与横截条件
    x ∗ ( t 0 ) = x 0 ψ [ x ∗ ( t f ) , t f ] = 0 λ ∗ ( t f ) = ∂ φ ∂ x ( t f ) + ∂ ψ T ∂ x ( t f ) ⋅ γ \begin{align} \begin{aligned} x^*(t_0) &= x_0\\ \psi\left[x^*(t_f), t_f\right] &= 0\\ \lambda^*(t_f) &= \frac{\partial \varphi}{\partial x(t_f)} + \frac{\partial \psi^T}{\partial x(t_f)}\cdot\gamma \end{aligned} \end{align} x(t0)ψ[x(tf),tf]λ(tf)=x0=0=x(tf)φ+x(tf)ψTγ
  4. t f t_f tf 自由时,哈密顿函数还要满足终端时刻的横截条件
    H ( t f ∗ ) = − ∂ φ ∂ t f − γ T ∂ ψ ∂ t f \begin{align} \begin{aligned} H(t_f^*)=-\frac{\partial \varphi}{\partial t_f} - \gamma^T\frac{\partial \psi}{\partial t_f} \end{aligned} \end{align} H(tf)=tfφγTtfψ

下边直接给出不同条件下的极小值原理的必要条件的表格:

t f t_f tf​ 固定的情况

最优控制 3:最优控制理论中的极小值原理与动态规划

t f t_f tf​ 自由的情况

最优控制 3:最优控制理论中的极小值原理与动态规划

动态规划

动态规划也可以用来解决最优控制问题,但是它最初是被设计用来解决多级决策问题的。比如一个地图,好多节点,研究怎么走代价最小的问题。它的公式看起来其实并不是像是控制领域的算法,更像是计算机领域的。它后来被扩展到离散系统的最优控制问题,每一个时间步就是一次决策。比如一共 10 秒,每秒钟 100 次,那么一共就是 1000 次决策,如果这1000次都是最优的,那么最后结果一定是最优的。

更进一步地,如果已知从 960 步到 1000 步的最优决策 u 960 − 1000 ∗ u^*_{960-1000} u9601000,那么不论前边 959 步怎么控制,只要到第 960 步的时候,从 960 步到 1000 步的最优决策一定是 u 960 − 1000 ∗ u^*_{960-1000} u9601000。这便是动态规划的核心:寻找最优子问题和重叠的子结构。很多计算机领域的经典问题都可以用动态规划建模和解决。(汉诺塔,走台阶等等,不搞计算机,不懂)

所以,一般情况下,基于动态规划的控制方法都是从后往前逆序求解的。先算第 1000 个最优决策是啥,然后算第 999 个,最后一步一步反推回第 1 个。仿真或者应用的时候再从第 1 个到第 1000 个顺序执行。典型的例子就是线性二次型最优控制 (LQR),这种问题是有解析解的。

当然动态规划也有连续系统的版本,它就是大名鼎鼎的 HJB 方程。HJB 方程揭示了所有最优控制问题的本质,并且只要解出 HJB 方程,最优控制问题就解决了 (当然前提是有解)。问题就在于有很多非线性的最优控制问题,或者模型不确定的最优控制问题,我们明知道 HJB 方程的解存在且唯一,但就是找不到。由此也衍生出一个新兴的控制方法 (理论):自适应动态规划 (Adaptive Dynamic Programming),也叫近似动态规划 (Approximate Dynamic Programming)。它的另外一个名字比较接地气:强化学习控制。只不过说强化学习控制一般是从计算机的角度看这个问题,说 ADP 一般是从控制理论的角度看这个问题。扯远了…

连续系统 HJB 方程的推导

最优控制问题与 (1) 中所描述的相同。考虑到动态规划中的 “时序逆推” 的概念,取
J [ x ( t ) , t ] = φ [ x ( t f ) , t f ] + ∫ t t f L [ x ( τ ) , u ( τ ) , τ ] d τ \begin{align} \begin{aligned} J\left[x(t), t\right] = \varphi\left[x(t_f), t_f\right] + \int_{t}^{t_f}{L\left[x(\tau), u(\tau), \tau\right]}d\tau \end{aligned} \end{align} J[x(t),t]=φ[x(tf),tf]+ttfL[x(τ),u(τ),τ]dτ
记为从 t t t 时刻到 t f t_f tf 时刻的代价函数,这个问题最终的目的是要求出 J [ x 0 , t 0 ] J\left[x_0, t_0\right] J[x0,t0]

改写 (6),得到
J [ x ( t ) , t ] = ∫ t t + δ t L [ x ( τ ) , u ( τ ) , τ ] d τ + φ [ x ( t f ) , t f ] + ∫ t + δ t t f L [ x ( τ ) , u ( τ ) , τ ] d τ = ∫ t t + δ t L [ x ( τ ) , u ( τ ) , τ ] d τ + J [ x ( t + δ t , t + δ t ) ] \begin{align} \begin{aligned} J\left[x(t), t\right] &= \int_{t}^{t+\delta t}{L\left[x(\tau), u(\tau), \tau\right]}d\tau+\varphi\left[x(t_f), t_f\right] + \int_{t+\delta t}^{t_f}{L\left[x(\tau), u(\tau), \tau\right]}d\tau\\ &=\int_{t}^{t+\delta t}{L\left[x(\tau), u(\tau), \tau\right]}d\tau+J\left[x(t+\delta t, t+\delta t)\right] \end{aligned} \end{align} J[x(t),t]=tt+δtL[x(τ),u(τ),τ]dτ+φ[x(tf),tf]+t+δttfL[x(τ),u(τ),τ]dτ=tt+δtL[x(τ),u(τ),τ]dτ+J[x(t+δt,t+δt)]

上式右边第一项应用积分中值定理,第二项应用 Taylor 展开,得到
J [ x ( t ) , t ] = ∫ t t + δ t L [ x ( τ ) , u ( τ ) , τ ] d τ + J [ x ( t + δ t , t + δ t ) ] = L [ x ( t + α δ t ) , u ( t + α δ t ) , t + α δ t ] δ t + J [ x ( t ) , t ] + ∂ J T ∂ x δ x + ∂ J ∂ t δ t = L [ x ( t + α δ t ) , u ( t + α δ t ) , t + α δ t ] δ t + J [ x ( t ) , t ] + ∂ J T ∂ x d x ( t ) d t δ t + ∂ J ∂ t δ t \begin{align} \begin{aligned} J\left[x(t), t\right] &=\int_{t}^{t+\delta t}{L\left[x(\tau), u(\tau), \tau\right]}d\tau+J\left[x(t+\delta t, t+\delta t)\right]\\ &=L\left[x(t+\alpha\delta t), u(t+\alpha\delta t), t+\alpha\delta t\right]\delta t+J\left[x(t), t\right]\\ & + \frac{\partial J^T}{\partial x}\delta x + \frac{\partial J}{\partial t}\delta t\\ &=L\left[x(t+\alpha\delta t), u(t+\alpha\delta t), t+\alpha\delta t\right]\delta t+J\left[x(t), t\right]\\ &+ \frac{\partial J^T}{\partial x}\frac{dx(t)}{dt}\delta t + \frac{\partial J}{\partial t}\delta t \end{aligned} \end{align} J[x(t),t]=tt+δtL[x(τ),u(τ),τ]dτ+J[x(t+δt,t+δt)]=L[x(t+αδt),u(t+αδt),t+αδt]δt+J[x(t),t]+xJTδx+tJδt=L[x(t+αδt),u(t+αδt),t+αδt]δt+J[x(t),t]+xJTdtdx(t)δt+tJδt
整理,得
L [ x ( t + α δ t ) , u ( t + α δ t ) , t + α δ t ] + ∂ J T ∂ x d x ( t ) d t + ∂ J ∂ t = 0 \begin{align} \begin{aligned} L\left[x(t+\alpha\delta t), u(t+\alpha\delta t), t+\alpha\delta t\right] + \frac{\partial J^T}{\partial x}\frac{dx(t)}{dt}+ \frac{\partial J}{\partial t}=0 \end{aligned} \end{align} L[x(t+αδt),u(t+αδt),t+αδt]+xJTdtdx(t)+tJ=0
δ t → 0 \delta t\rightarrow0 δt0,并应用最优性原理,有
∂ J ∗ [ x ( t ) , t ] ∂ t = − min ⁡ u ∈ Ω { L [ x ( t ) , u ( t ) , t ] + [ ∂ J ∗ ∂ x ] T f [ x , u , t ] } \begin{align} \begin{aligned} \frac{\partial J^*\left[x(t), t \right]}{\partial t}=-\min_{u\in\Omega}{\left\{L\left[x(t), u(t), t\right] + \left[\frac{\partial J^*}{\partial x}\right]^Tf\left[x,u,t\right]\right\}} \end{aligned} \end{align} tJ[x(t),t]=uΩmin{L[x(t),u(t),t]+[xJ]Tf[x,u,t]}
此时,定义哈密顿函数
H [ x ( t ) , u ∗ [ x ( t ) , ∂ J ∗ ∂ x , t ] , ∂ J ∗ ∂ x , t ] = min ⁡ u ∈ Ω H [ x ( t ) , u ( t ) , ∂ J ∗ ∂ x , t ] H\left[x(t), u^*\left[x(t), \frac{\partial J^*}{\partial x}, t\right], \frac{\partial J^*}{\partial x}, t\right]=\min_{u\in\Omega}{H\left[x(t), u(t), \frac{\partial J^*}{\partial x}, t\right]} H[x(t),u[x(t),xJ,t],xJ,t]=uΩminH[x(t),u(t),xJ,t]

则,HJB 方程可以简写如下:
H [ x ( t ) , u ∗ [ x ( t ) , ∂ J ∗ ∂ x , t ] , ∂ J ∗ ∂ x , t ] + ∂ J ∗ ∂ t = 0 \begin{align} \begin{aligned} H\left[x(t), u^*\left[x(t), \frac{\partial J^*}{\partial x}, t\right], \frac{\partial J^*}{\partial x}, t\right]+\frac{\partial J^*}{\partial t}=0 \end{aligned} \end{align} H[x(t),u[x(t),xJ,t],xJ,t]+tJ=0
同时满足边界条件:
J ∗ [ x ( t f ) , t ) f ] = φ [ x ( t f ) , t f ] J^*\left[x(t_f), t)f\right]=\varphi\left[x(t_f), t_f\right] J[x(tf),t)f]=φ[x(tf),tf]

至此,极小值原理与动态规划基本理论的学习笔记就结束了 (不放例题了,敲公式太麻烦了)。文章来源地址https://www.toymoban.com/news/detail-500993.html

到了这里,关于最优控制 3:最优控制理论中的极小值原理与动态规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 动态规划(dp)-最优路径

    蒜头君要回家,已知蒜头君在 左下角(1,1)位置,家在 右上角(n,n)坐标处。蒜头君走上一个格子就会花费相应体力,而且蒜头君只会往家的方向走,也就是只能往上,或者往右走。蒜头君想知道他回到家需要花费的最少体力是多少。 例如下图所示,格子中的数字代表走上该格子

    2024年04月24日
    浏览(35)
  • 动态规划:最优二叉搜索树

    给定一个序列 有n个有序且各不相同的键, 集合 表示在K中成功的搜索的概率; 为n+1 个不同的哑键,表示所有在和 之间的值, 表示不成功的搜索的概率. 创建二叉搜索树, 使得其期望搜索花费最小。 如果一棵最优二叉搜索树T的子树T’含有键那么这个子树T’肯定是子问题键

    2024年01月20日
    浏览(40)
  • 独立任务的最优调度问题(动态规划)

    问题描述: 用2台处理机A和B处理n个作业。设第i个作业交给机器A处理时需要时间ai,若由机器B来处理,则需要时间bi。由于各作业的特点和机器的性能关系,很可能对于某些i,有aibi,而对于某些j,j≠i,有ajbj。既不能将一个作业分开由2台机器处理,也没有一台机器能同时处理

    2024年02月04日
    浏览(34)
  • 蓝桥杯:最优包含--动态规划(C语言)

    1、S串用i进行遍历,T串用j进行遍历。 2、dp数组[i][j]的含义:S串中从S[0]到S[i],最少修改dp[i][j]个字符,可以包含T串中从T[0]到T[j]这部分字符串。 3、遍历时遇到的情况有两种: (1)情况一:S[i]==T[j]        dp[i][j]=min(dp[i-1][j],dp[i-1][j-1]);        dp[i-1][j]的含义:S[0]到S[i-1]中

    2024年02月16日
    浏览(28)
  • 【动态规划】最优二叉搜索树——算法设计与分析

    二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉搜索树。 规定树根为第0层,圆结点为数

    2024年02月16日
    浏览(30)
  • 动态规划理论基础

    动态规划方法通常用来求解最优化问题(optimization problem)。这类问题可以有很多可行解,每个解都有一个值,我们希望寻找具有最优值(最小值或最大值)的解。我们称这样的解为 问题的一个最优解(an optimal solution) ,而 不是最优解(the optimal solution) ,因为 可能有多个解都达到最

    2024年02月06日
    浏览(14)
  • 基于动态规划的并联式混合动力汽车全局最优能量管理策略研究

    1.1动力系统构型 1.2车辆模型 2.1 能量管理最优问题提出 2.2 基于动态规划的能量管理策略求解        混合动力汽车由于兼具传统燃油汽车和纯电动汽车的优点,在纯电动汽车和燃料电池汽车技术尚未成熟及充电等基础设施未普及之前,成为了各国政府和汽车行业关注的重点

    2024年02月02日
    浏览(36)
  • 动态规划|01背包理论基础(滚动数组)

    卡码网第46题 (opens new window) 现在差不多搞明白01背包问题了   昨天动态规划:关于01背包问题,你该了解这些! (opens new window)中是用二维dp数组来讲解01背包。 今天我们就来说一说滚动数组,其实在前面的题目中我们已经用到过滚动数组了,就是把二维dp降为一维dp,一些录

    2024年04月26日
    浏览(31)
  • 轨迹规划 | 图解最优控制LQR算法(附ROS C++/Python/Matlab仿真)

    🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。 🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法 最优控制理论 是一种

    2024年04月09日
    浏览(37)
  • 使用GPOPSII求解无人驾驶中的过弯最优路径规划问题

    文章目录 前言 一、GPOPSII是什么? 二、一个基于车辆单轨运动学模型的过弯轨迹规划例子 1.问题介绍 2.代码分析 总结         无人驾驶分为环境感知、轨迹规划、运动控制三大部分,随着无人驾驶领域的不断发展,轨迹规划这门技术也越来越重要,在这里分享通过matla

    2024年01月16日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包