Spark中数据预处理和清洗的方法(python)

这篇具有很好参考价值的文章主要介绍了Spark中数据预处理和清洗的方法(python)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在Spark中进行数据分析,数据预处理和清洗是必不可少的步骤,以下是一些常用的方法:

  1. 去除重复行
  2. 去除空值
  3. 替换空值
  4. 更改数据类型
  5. 分割列
  6. 合并列
  7. 过滤行

1. 去除重复行

去除重复行可以使用DataFrame的dropDuplicates()方法,例如:

df = df.dropDuplicates()

2. 去除空值

去除空值可以使用DataFrame的dropna()方法,例如:

df = df.dropna()

可以通过指定参数subset来选择需要去除空值的列,也可以通过指定参数how来选择去除空值的方式,例如:

# 去除age和gender列中的空值
df = df.dropna(subset=["age", "gender"])
# 去除包含空值的整行数据
df = df.dropna(how="any")

3. 替换空值

替换空值可以使用DataFrame的fillna()方法,例如:

# 将age列中的空值替换为0
df = df.fillna({"age": 0})

4. 更改数据类型

更改数据类型可以使用DataFrame的cast()方法,例如:

# 将age列的数据类型从字符串转换为整数
df = df.withColumn("age", df["age"].cast("integer"))

5. 分割列

分割列可以使用DataFrame的split()方法,例如:

# 将name列按照空格分割为first_name和last_name列
df = df.withColumn("first_name", split(df["name"], " ")[0])
df = df.withColumn("last_name", split(df["name"], " ")[1])

6. 合并列

合并列可以使用DataFrame的concat()方法,例如:

# 将first_name和last_name列合并为name列
df = df.withColumn("name", concat(df["first_name"], lit(" "), df["last_name"]))

7. 过滤行

过滤行可以使用DataFrame的filter()方法,例如:

# 过滤age大于等于18的行数据
df = df.filter(df["age"] >= 18)

以上是常见的数据预处理和清洗方法,需要根据实际情况选择合适的方法进行数据处理。文章来源地址https://www.toymoban.com/news/detail-501083.html

到了这里,关于Spark中数据预处理和清洗的方法(python)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据挖掘 | 实验一 数据的清洗与预处理

    1)了解数据质量问题、掌握常用解决方法; 2)熟练掌握数据预处理方法,并使用Python语言实现; PC机 + Python3.7环境(pycharm、anaconda或其它都可以) 清洗与预处理的必要性 在实际数据挖掘过程中,我们拿到的初始数据,往往存在缺失值、重复值、异常值或者错误值,通常这

    2023年04月08日
    浏览(45)
  • R语言 | GEO表达矩阵的数据清洗与预处理

    目录 1.去除/// 2.去除重复的基因名 3.表达矩阵自动log2化 4.矫正差异 表达量矩阵的数据清洗应该在 注释完成之后 进行,并且下列操作最好按顺序进行 如下图的表格所示,同一个探针ID对应的gene有多个,用///分隔着,而我们想获得一个探针ID只对应一个基因symbol的表格。 表达

    2024年02月13日
    浏览(38)
  • 云计算与大数据分析:如何实现高效的数据清洗与预处理

    随着互联网的普及和数据的快速增长,数据分析和处理成为了企业和组织中的重要组成部分。大数据分析是指利用大量数据来发现新的信息和洞察,从而为企业和组织提供决策支持。云计算是一种基于互联网的计算资源共享和分配模式,它可以让企业和组织更加高效地利用计

    2024年04月11日
    浏览(45)
  • 【数据预处理】基于Kettle的字符串数据清洗、Kettle的字段清洗、Kettle的使用参照表集成数据

    🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏

    2024年02月03日
    浏览(53)
  • Python数据分析与应用 |第4章 使用pandas进行数据预处理 (实训)

    编号 性别 高血压 是否结婚 工作类型 居住类型 体重指数 吸烟史 中风 9046 男 否 是 私人 城市 36.6 以前吸烟 是 51676 女 否 是 私营企业 农村 N/A 从不吸烟 是 31112 男 否 是 私人 农村 32.5 从不吸烟 是 60182 女 否 是 私人 城市 34.4 抽烟 是 1665 女 是 是 私营企业 农村 24 从不吸烟 是

    2024年04月23日
    浏览(42)
  • 数据挖掘学习——数据预处理方法代码汇总(python)

    目录 一、归一化处理方法 (1)min-max方法(离散归一化) (2)零-均值规范化方法 (3)小数定标规范化 二、插值法 (1)拉格朗日插值法 三、相关性分析 (1)pearson相关性系数 (2)spearman相关性系数 四、主成分分析(PCA) 归一化常用方法有: (1)min-max方法(离散归一化

    2024年02月08日
    浏览(66)
  • 【Python】数据预处理之将类别数据转换为数值的方法(含Python代码分析)

    在进行Python数据分析的时候,首先要进行数据预处理。但是有时候不得不处理一些非数值类别的数据,遇到这类问题时该怎么解决呢? 目前为止,总结了三种方法,这里分享给大家。 这种方法是属于映射字典将类标转换为整数,不过这种方法适用范围有限。 我们首先创建一

    2024年02月09日
    浏览(57)
  • Spark数据倾斜解决方案一:源数据预处理和过滤倾斜key

    为什么把源数据预处理和过滤掉倾斜的key两种处理倾斜的方式写到一起? 因为这两种方式在实际的项目中场景较少而且单一,对于数据源预处理,比如原本要在spark中进行聚合或join的操作,提前到hive中去做,这种方式虽然解决了spark中数据倾斜的问题,但是hive中依然也会存

    2024年02月09日
    浏览(41)
  • 自然语言处理入门:使用Python和NLTK进行文本预处理

    文章标题:自然语言处理入门:使用Python和NLTK进行文本预处理 简介 自然语言处理(NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解、分析和生成人类语言。本文将介绍如何使用Python编程语言和NLTK(Natural Language Toolkit)库进行文本预处理,为后续的文本分析

    2024年02月19日
    浏览(53)
  • 如何利用 ChatGPT 进行自动数据清理和预处理

    推荐:使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 ChatGPT 已经成为一把可用于多种应用的瑞士军刀,并且有大量的空间将 ChatGPT 集成到数据科学工作流程中。 如果您曾经在真实数据集上训练过机器学习模型,您就会知道数据清理和预处理的步骤对于构建可靠的

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包