mid360激光雷达跑Point-LIO算法

这篇具有很好参考价值的文章主要介绍了mid360激光雷达跑Point-LIO算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

mid360激光雷达跑Point-LIO算法
mid360激光雷达跑Point-LIO算法

mid360激光雷达跑Point-LIO算法
mid360激光雷达跑Point-LIO算法

在商场里面上下楼穿梭,使用mid360激光雷达,完成建图

以下是建图的运行过程及参数配置

mid360激光雷达驱动

安装(ubuntu20.4 )

/ws_livox/src/livox_ros_driver2$source /opt/ros/noetic/setup.sh
/ws_livox/src/livox_ros_driver2$./build.sh ROS1

配置修改MID360_config.json

192.168.1.5,是本机ip
192.168.1.157是激光ip
57是激光雷达的sn号后两位
文章来源地址https://www.toymoban.com/news/detail-501328.html

到了这里,关于mid360激光雷达跑Point-LIO算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PX4|基于FAST-LIO mid360的无人机室内自主定位及定点悬停

    在配置mid360运行环境后,可使用mid360进行室内的精准定位。 在livox_ros_driver2的上级目录src下保存fast-lio的工程 为使用mid360作为硬件输入修改源代码中的所有 livox_ros_driver 为 livox_ros_driver2 (包括.cpp .h 以及 package.xml) 在 livox_ros_driver2 的pkg中编译 编译过程大概需要3g的内存,若

    2024年04月08日
    浏览(47)
  • 使用mid360从0开始搭建实物机器人入门级导航系统,基于Fast_Lio,Move_Base

    本文原本只是自己在拿到mid360后,开始进行开发过程的一些问题和学习的记录。毕竟实物和仿真还是有很多不同,且由于碰到的问题也比较多,READEME也越来越详细,所以就干脆整合起来,做成了一篇使用mid360的搭建入门的导航系统全流程分享。里面用到的都是主流的开源的框

    2024年02月05日
    浏览(62)
  • 3D激光雷达-Robotsense使用---LIO_SAM测试

    1. 参考链接 TixiaoShan/LIO-SAM: LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping lio-sam运行自己的rosbag_heirenlop的博客-CSDN博客 LIO-SAM:配置环境、安装测试、适配自己采集数据集_有待成长的小学生的博客-CSDN博客_lio-sam 2. 雷达驱动-更改点云类型 运行lio-sam需要用到 ring 和

    2024年02月03日
    浏览(41)
  • 激光SLAM:Faster-Lio 算法编译与测试

    Faster-LIO是基于FastLIO2开发的。FastLIO2是开源LIO中比较优秀的一个,前端用了增量的kdtree(ikd-tree),后端用了迭代ESKF(IEKF),流程短,计算快。Faster-LIO则把ikd-tree替换成了iVox,顺带优化了一些代码逻辑,实现了更快的LIO。在典型的32线激光雷达中可以取得100-200Hz左右的计算频

    2024年02月02日
    浏览(37)
  • 自动驾驶感知——激光雷达物体检测算法

    输入 ❖ 点:X, Y, Z和反射强度R ❖ 点云:多个点的集合(无序的,非结构化的数据) 输出 ❖ 目标的类别和置信度 ❖ 目标的边框(BoundingBox) 中心点3D坐标,长宽高,旋转角度 ❖目标的其它信息 速度,加速度等 算法 ❖ 点云表示:点视图,俯视图,前视图     如下表所

    2024年02月06日
    浏览(94)
  • 自动驾驶环境感知之激光雷达物体检测算法

    前言 :视觉感知包括二维和三维视觉感知,其最终目的是为了获取三维世界坐标系下感兴趣的目标和场景的信息。单目相机下,需要几何约束或者海量数据来学习,以此来推测三维信息。双目相机下,可基于立体视觉原理来计算目标的深度信息,但在光照条件比较差或者纹理

    2024年01月23日
    浏览(55)
  • livox mid360接线制作

    最近买了livox mid360激光雷达,但是居然不带数据线和电源线,得自己另外去买,livox航插一分三线,一根399元,我晚上买了一根,第二天早上就退了,因为太贵了,一根线399,不划算,就打算自己做一根。 livox mid360样貌大小如下,上面就只有一个m12的12芯航空插头公头,也就

    2024年02月07日
    浏览(126)
  • Apollo官方课程算法解读笔记——激光雷达感知模块、基于PointPillars的激光雷达点云检测算法、PointPillars模型的部署和优化模型的部署和优化

    感知模块检测效果: 左边为摄像头拍摄图像,激光雷达感知不依赖左边CAMERA,而是点云数据对应的效果图(黄色上方数字为Tracking ID) 主车红灯时的激光点云检测效果图 车道线给CAMERA提供一个标定参考,使得camera检测出来的障碍物从2维转化为3维的信息,因为此标定的参考,

    2024年02月14日
    浏览(44)
  • Cartographer算法2D激光雷达与IMU融合建图

     上一篇文章讲了cartographer算法手持雷达建图的参数调试,这篇进一步讲如何融合2D雷达与IMU采用cartographer算法进行slam建图。 cartographer算法手持二维激光雷达建图(不使用里程计及IMU) https://blog.csdn.net/wangchuchua/article/details/127268037?spm=1001.2014.3001.5502 思岚s1激光雷达、Tobotics

    2024年02月07日
    浏览(50)
  • 激光雷达点云基础-点云滤波算法与点云配准算法

    激光雷达点云处理在五年前就做了较多的工作,最近有一些新的接触发现激光雷达代码原理五年前未见重大更新,或许C++与激光雷达结合本身就是比较高的技术门槛。深度学习调包侠在硬核激光雷达技术面前可以说是完全的自愧不如啊。 1、点云滤波 在获取点云数据时,由于

    2024年03月19日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包