PyTorch翻译官网教程3-DATASETS & DATALOADERS

这篇具有很好参考价值的文章主要介绍了PyTorch翻译官网教程3-DATASETS & DATALOADERS。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

官网链接

Datasets & DataLoaders — PyTorch Tutorials 2.0.1+cu117 documentation

数据集和数据加载器

处理样本数据的代码可能会变得混乱并且难以维护。理想情况下,我们希望我们的数据集代码与模型训练代码解耦,以获得更好的可读性和模块化。PyTorch提供了两个数据源:torch.utils.data.DataLoader和torch.utils.data.Dataset,它们允许你使用预加载的数据集和你自己的数据集。Dataset存储样本及其相应的标签,DataLoader在Dataset之上包装一个可迭代对象,以便于访问样本。

加载数据集

下面是一个如何从TorchVision加载Fashion-MNIST数据集的示例。Fashion-MNIST是Zalando文章图像的数据集,由60,000个训练样例和10,000个测试样例组成。每个示例都包含一个28×28灰度图像和来自10个类之一的关联标签。

我们用以下参数加载FashionMNIST数据集:

  • root 是存储训练/测试数据的路径
  • train 指定训练或者测试数据集
  • download=True 如果在root目录下不可用,是否从互联网上下载数据
  • transform 和 target_transform 指定特征和标签的转换
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

输出

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz

  0%|          | 0/26421880 [00:00<?, ?it/s]
  0%|          | 65536/26421880 [00:00<01:12, 363415.33it/s]
  1%|          | 229376/26421880 [00:00<00:38, 679946.01it/s]
  3%|2         | 753664/26421880 [00:00<00:12, 2072129.51it/s]
  7%|6         | 1802240/26421880 [00:00<00:06, 3878939.55it/s]
 16%|#6        | 4358144/26421880 [00:00<00:02, 9473273.38it/s]
 25%|##4       | 6553600/26421880 [00:00<00:01, 10918007.48it/s]
 34%|###4      | 9011200/26421880 [00:01<00:01, 14051286.10it/s]
 43%|####3     | 11370496/26421880 [00:01<00:01, 14100224.63it/s]
 52%|#####2    | 13762560/26421880 [00:01<00:00, 16167133.39it/s]
 61%|######1   | 16187392/26421880 [00:01<00:00, 15640376.47it/s]
 70%|#######   | 18612224/26421880 [00:01<00:00, 17384518.47it/s]
 80%|#######9  | 21069824/26421880 [00:01<00:00, 16443689.83it/s]
 89%|########8 | 23429120/26421880 [00:01<00:00, 17854523.89it/s]
 98%|#########8| 25952256/26421880 [00:01<00:00, 16957283.54it/s]
100%|##########| 26421880/26421880 [00:02<00:00, 13185733.62it/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz

  0%|          | 0/29515 [00:00<?, ?it/s]
100%|##########| 29515/29515 [00:00<00:00, 327080.02it/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz

  0%|          | 0/4422102 [00:00<?, ?it/s]
  1%|1         | 65536/4422102 [00:00<00:12, 361139.75it/s]
  5%|5         | 229376/4422102 [00:00<00:06, 678952.39it/s]
 19%|#9        | 851968/4422102 [00:00<00:01, 2356375.68it/s]
 44%|####3     | 1933312/4422102 [00:00<00:00, 4134961.37it/s]
100%|##########| 4422102/4422102 [00:00<00:00, 6052787.05it/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz

  0%|          | 0/5148 [00:00<?, ?it/s]
100%|##########| 5148/5148 [00:00<00:00, 43184553.98it/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw

迭代和可视化数据集

我们可以像列表一样手动索引数据集:training_data[index]。我们可以使用matplotlib来可视化训练数据中的一些样本。

labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
    sample_idx = torch.randint(len(training_data), size=(1,)).item()
    img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.squeeze(), cmap="gray")
plt.show()

PyTorch翻译官网教程3-DATASETS & DATALOADERS

 文章来源地址https://www.toymoban.com/news/detail-501510.html

通过文件创建自定义数据集

自定义Dataset类必须实现三个函数:__init__, __len__和__getitem__。FashionMNIST图像存储在img_dir目录中,它们的标签单独存储在CSV文件annotations_file中。

在接下来的部分中,我们将分解这些函数中发生的事情。

import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label


 

__init__

__init__函数在实例化Dataset对象时运行一次。我们初始化的目录包含图像、注释文件和两个transforms(下一节将详细介绍)

label .csv文件看起来像这样:

tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
    self.img_labels = pd.read_csv(annotations_file)
    self.img_dir = img_dir
    self.transform = transform
    self.target_transform = target_transform

__len__

__len__函数返回数据集中的样本数。

示例:

def __len__(self):
    return len(self.img_labels)

__getitem__

__getitem__函数使用给定的索引idx,从数据集中加载并返回一个样本。基于索引,它识别图像在磁盘上的位置,使用read_image函数将其转换为张量,从self.img_labels中的CSV数据中检索相应的标签。调用它们的transform函数(如果可用)。并在元组中返回张量图像和相应的标签。

def __getitem__(self, idx):
    img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
    image = read_image(img_path)
    label = self.img_labels.iloc[idx, 1]
    if self.transform:
        image = self.transform(image)
    if self.target_transform:
        label = self.target_transform(label)
    return image, label

使用DataLoaders准备训练数据集

Dataset每次检索我们数据集中一个样本的特征和标签。在训练模型时,我们通常希望以“小批量”的方式传递样本,在每个epoch中重新洗数据以减少模型过拟合,并使用Python的多进程来加速数据检索。

DataLoader是一个可迭代对象,它用一个简单的API为我们抽象了复杂性。

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

遍历DataLoader

我们已经将该数据集加载到DataLoader中,并且可以根据需要迭代该数据集。每次迭代都返回一批train_features和train_labels(分别包含batch_size=64个特征和标签)。因为我们指定了shuffle=True,所以在遍历所有批次之后,将对数据进行清洗(要对数据加载顺序进行更细粒度的控制,请查看样例)

# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

输出

PyTorch翻译官网教程3-DATASETS & DATALOADERS

 

Feature batch shape: torch.Size([64, 1, 28, 28])
Labels batch shape: torch.Size([64])
Label: 0

到了这里,关于PyTorch翻译官网教程3-DATASETS & DATALOADERS的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch翻译官网教程6-AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD

    Automatic Differentiation with torch.autograd — PyTorch Tutorials 2.0.1+cu117 documentation 当训练神经网络时,最常用的算法是方向传播算法。在该算法中,根据损失函数与给定参数的梯度来调整模型参数(权重)。 为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持任

    2024年02月16日
    浏览(48)
  • PyTorch翻译官网教程-FAST TRANSFORMER INFERENCE WITH BETTER TRANSFORMER

    Fast Transformer Inference with Better Transformer — PyTorch Tutorials 2.0.1+cu117 documentation 本教程介绍了作为PyTorch 1.12版本的一部分的Better Transformer (BT)。在本教程中,我们将展示如何使用更好的 Transformer 与 torchtext 进行生产推理。Better Transformer是一个具备生产条件fastpath并且可以加速在CP

    2024年02月13日
    浏览(43)
  • PyTorch翻译官网教程-LANGUAGE MODELING WITH NN.TRANSFORMER AND TORCHTEXT

    Language Modeling with nn.Transformer and torchtext — PyTorch Tutorials 2.0.1+cu117 documentation 这是一个关于训练模型使用nn.Transformer来预测序列中的下一个单词的教程。 PyTorch 1.2版本包含了一个基于论文Attention is All You Need的标准 transformer 模块。与循环神经网络( RNNs )相比, transformer 模型已被

    2024年02月13日
    浏览(40)
  • PyTorch翻译官网教程-DEPLOYING PYTORCH IN PYTHON VIA A REST API WITH FLASK

    Deploying PyTorch in Python via a REST API with Flask — PyTorch Tutorials 2.0.1+cu117 documentation 在本教程中,我们将使用Flask部署PyTorch模型,并开放用于模型推断的REST API。特别是,我们将部署一个预训练的DenseNet 121模型来检测图像。 这是关于在生产环境中部署PyTorch模型的系列教程中的第一篇

    2024年02月16日
    浏览(43)
  • PyTorch翻译官网教程-NLP FROM SCRATCH: GENERATING NAMES WITH A CHARACTER-LEVEL RNN

    NLP From Scratch: Generating Names with a Character-Level RNN — PyTorch Tutorials 2.0.1+cu117 documentation 这是我们关于“NLP From Scratch”的三篇教程中的第二篇。在第一个教程中 /intermediate/char_rnn_classification_tutorial 我们使用RNN将名字按其原始语言进行分类。这一次,我们将通过语言中生成名字。

    2024年02月13日
    浏览(44)
  • PyTorch翻译官网教程-NLP FROM SCRATCH: CLASSIFYING NAMES WITH A CHARACTER-LEVEL RNN

    NLP From Scratch: Classifying Names with a Character-Level RNN — PyTorch Tutorials 2.0.1+cu117 documentation 我们将建立和训练一个基本的字符级递归神经网络(RNN)来分类单词。本教程以及另外两个“from scratch”的自然语言处理(NLP)教程 NLP From Scratch: Generating Names with a Character-Level RNN 和 NLP From Scratch

    2024年02月12日
    浏览(59)
  • GPT最佳实践-翻译官网

    https://platform.openai.com/docs/guides/gpt-best-practices/gpt-best-practices 本指南分享了从 GPT 获得更好结果的策略和战术。有时可以结合使用此处描述的方法以获得更大的效果。我们鼓励进行实验以找到最适合您的方法。 此处演示的一些示例目前仅适用于我们功能最强大的模型 gpt-4 .如果

    2024年02月09日
    浏览(50)
  • 【python】python结合js逆向,让有道翻译成为你的翻译官,实现本地免费实时翻译

    ✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN新星创作者等等。 🏆《博客》:Python全栈,前后端开发,人工智能,js逆向,App逆

    2024年03月23日
    浏览(43)
  • Benchmarking Chinese Text Recognition: Datasets, Baselines| OCR 中文数据集【论文翻译】

    https://arxiv.org/pdf/2112.15093.pdf https://github.com/FudanVI/benchmarking-chinese-text-recognition 深度学习蓬勃发展的局面见证了近年来文本识别领域的迅速发展。然而,现有的文本识别方法主要针对英文文本。作为另一种广泛使用的语言,中文文本识别在各个领域都有广泛的应用市场。根据我

    2024年02月10日
    浏览(41)
  • Pytorch使用torchvision.datasets.ImageFolder读取数据集,数据集的内容排列状况

    当使用torchvision.datasets.ImageFolder读取猫狗数据集时,dataset中存的图片是 \\\'猫狗猫狗猫狗猫狗\\\' 还是 \\\'猫猫猫猫狗狗狗狗\\\' 呢? 数据集文件的存放路径如下图 测试代码如下 输出结果如下 可以得知,是 \\\'猫猫猫猫狗狗狗狗\\\'

    2024年02月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包