【数学建模】元胞自动机(CA)详解 + Matlab代码实现

这篇具有很好参考价值的文章主要介绍了【数学建模】元胞自动机(CA)详解 + Matlab代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、什么是元胞自动机?

元胞自动机(cellular automata,CA) 是一种时间、空间、状态都离散,空间相互作用和时间因果关系为局部的网格动力学模型,具有模拟复杂系统时空演化过程的能力。

元胞自动机的构建没有固定的数学公式,构成方式繁杂,变种很多,行为复杂。故其分类难度也较大,自元胞自动机产生以来,对于元胞自动机分类的研究就是元胞自动机的一个重要的研究课题和核心理论,在基于不同的出发点,元胞自动机可有多种分类,其中,最具影响力的当属S. Wolfram在80年代初做的基于动力学行为的元胞自动机分类,而基于维数的元胞自动机分类也是最简单和最常用的划分。除此之外,在1990年,Howard A.Gutowitz提出了基于元胞自动机行为的马尔科夫概率量测的层次化、参量化的分类体系(Gutowitz,H. A.,1990)。下面就上述的前两种分类作进一步的介绍。同时就几种特殊类型的元胞自动机进行介绍和探讨S. Wolfrarm在详细分析研究了一维元胞自动机的演化行为,并在大量的计算机实验的基础上,将所有元胞自动机的动力学行为归纳为四大类(Wolfram. S.,1986):

  • ⑴平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处于固定状态。不随时间变化而变化。
  • ⑵周期型:经过一定时间运行后,元胞空间趋于一系列简单的固定结构(Stable Patterns)或周期结构(Perlodical Patterns)。由于这些结构可看作是一种滤波器(Filter),故可应用到图像处理的研究中。
  • ⑶混沌型:自任何初始状态开始,经过一定时间运行后,元胞自动机表现出混沌的非周期行为,所生成的结构的统计特征不再变止,通常表现为分形分维特征。
  • ⑷复杂型:出现复杂的局部结构,或者说是局部的混沌,其中有些会不断地传播。
    【数学建模】元胞自动机(CA)详解 + Matlab代码实现

二、图解元胞自动机:

图片来源于连大数学建模

【数学建模】元胞自动机(CA)详解 + Matlab代码实现


三、案例+Matlab代码实现:

1.奇偶规则

【数学建模】元胞自动机(CA)详解 + Matlab代码实现
matlab代码:

%%奇偶规则游戏
clear;clc;
n = 200;%指定边界长度
Se = zeros(n);
z = zeros(n);
Se(n/2-2:n/2+2,n/2-2:n/2+2)=1;  %初始化中间的点
Ch = imagesc(Se);
axis square;
Sd = zeros(n+2);  %边界
while(true) %死循环
    Sd(2:n+1,2:n+1) = Se;
    sumValue = Sd(1:n,2:n+1)+Sd(3:n+2,2:n+1)+Sd(2:n+1,1:n)+Sd(2:n+1,3:n+2);
    Se = mod(sumValue,2);
    set(Ch,'cdata',Se);
    pause(0.03)
end

运行效果:
【数学建模】元胞自动机(CA)详解 + Matlab代码实现

2.生命游戏

【数学建模】元胞自动机(CA)详解 + Matlab代码实现
matlab代码:

clear;clc;
%%生命游戏
n = 200;
p = 0.4;
z = zeros(n);
Se = rand(n)<p;
Sd = zeros(n+2);
Ph = imagesc(Se);
while(true)
    Sd(2:n+1,2:n+1)=Se;
    sumValue = Sd(1:n,1:n)+Sd(1:n,2:n+1)+Sd(1:n,3:n+2)+Sd(2:n+1,1:n)+Sd(2:n+1,3:n+2)+Sd(3:n+2,1:n)+Sd(3:n+2,2:n+1)+Sd(3:n+2,3:n+2);
    for i=1:n
        for j=1:n
            if(sumValue(i,j)==3||(sumValue(i,j)==2&&Se(i,j)==1))
                Se(i,j) = 1;
            else
                Se(i,j) = 0;
            end
        end
    end
    set(Ph,'cdata',Se);
    pause(0.05);
end

运行效果:
【数学建模】元胞自动机(CA)详解 + Matlab代码实现

3.森林火灾

【数学建模】元胞自动机(CA)详解 + Matlab代码实现
matlab代码:

clear;clc;
%火灾
n = 300;                           % 定义表示森林的矩阵大小
k = 30000;                         % 迭代次数
Pground = 0.8;                     % 从着火变成空地的概率
Plight = 5e-6; Pgrowth = 1e-3;      % 定义闪电和生长的概率  
P2=0.7; %旁边有火,树着火的概率
UL = [n,1:n-1]; DR = [2:n,1];      % 定义上左,下右邻居
veg=zeros(n,n)+2;                    % 初始化表示森林的矩阵
imh = image(cat(3,veg,veg,veg));   % 可视化表示森林的矩阵
Sd = zeros(n+2);                 %边界
% veg = 空地为0 着火为1 树木为2
for i=1:k
    Sd(2:n+1,2:n+1) = veg;
    sumValue = (Sd(1:n,2:n+1)==1)+(Sd(2:n+1,1:n)==1)+(Sd(2:n+1,3:n+2)==1)+(Sd(3:n+2,2:n+1)==1);
    for p=1:n
        for q=1:n
            if(veg(p,q)==2 && ((sumValue(p,q)>0 && rand()<P2)||rand()<Plight))
                %首先要是树,而且需要邻居有火,就会一定概率着火;或者被雷劈了,就会直接着火
                veg(p,q)=1;
            elseif(veg(p,q)==1&&rand()<Pground)
                %如果是火且满足概率,则变为空地
                veg(p,q) = 0;
            elseif(veg(p,q)==0&&sumValue(p,q)==0&&rand()<Pgrowth)
                %如果是空地,且周围没有火,那么以一定概率长成树
                veg(p,q) = 2;
            end
        end
    end
    set(imh, 'cdata', cat(3,(veg==1),(veg==2),zeros(n)))
    drawnow  
end

运行效果:
【数学建模】元胞自动机(CA)详解 + Matlab代码实现文章来源地址https://www.toymoban.com/news/detail-502198.html


到了这里,关于【数学建模】元胞自动机(CA)详解 + Matlab代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数模笔记14-元胞自动机

    元胞自动机理论 元胞自动机(Cellular Automata,CA)是一种时空离散的局部动力学模型,是研究复杂系统的一种典型方法,特别适合用于空间复杂系统的时空动态模拟研究。 元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的 规则 构成。凡是满足这些

    2024年02月09日
    浏览(37)
  • 元胞自动机( Cellular Automata)研究 (Python代码实现)

     👨‍🎓 个人主页: 研学社的博客   💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🌈

    2024年02月09日
    浏览(37)
  • 数学建模学习之发动机最优生产计划模型求解

    问题重述 某工厂向用户提供发动机,按合同规定,其交货数量和日期是:第一季末交 40 台第二季末交 60 台,第三季末交 80 台。工厂的最大生产能力为每季 100 台,每季的生产费用是 (元),此处  为该季生产发动机的台数。若工厂生产得多,多余的发动机可移到下一季度向用户

    2024年02月08日
    浏览(59)
  • AC自动机 模板

    核心思路是kmp的拓展,只是i++、j++什么的转换成了树的形式,初始化用bfs,每一点的初始化都是借助于该层以前的层进行的。 trie图优化: ne[t]是回溯一次,tr[ne[t]][i]直接记录好了它下一个点的位置,存在儿子就到儿子,没有儿子就是记录的回溯好的点。 每个点的ne都被计算

    2024年01月21日
    浏览(33)
  • AC 自动机学习笔记

    AC自动机( (Aho Corasick Atomaton) )有着一种 (KMP) 的思想,所以在学习之前建议先学一下 (KMP) 。同时还需要了解一下 (Trie) 树(建议去看一下 oi-wiki 上的字典树) 给定一个字符串 (S) 和 (n) 模式串,问有多少个模式串在 (S) 中出现过。 首先我们把 (n) 个模式串组成一

    2024年02月11日
    浏览(38)
  • 「学习笔记」AC 自动机

    点击查看目录 目录 「学习笔记」AC 自动机 算法 问题 思路 代码 例题 Keywords Search 玄武密码 单词 病毒 最短母串 文本生成器 背单词 密码 禁忌 前置:「学习笔记」字符串基础:Hash,KMP与Trie。 好像对例题的讲解越来越抽象了? 求 (n) 个单词在一个长度为 (m) 的文章里出现

    2024年02月02日
    浏览(39)
  • KMP算法 - 确定有限状态自动机

    子串匹配问题,拍脑袋一下子想出来的暴力解法大抵都是两重for循环,不断重复扫描主串,与子串进行匹配,重复换句话讲就是冗余,会有很高的时间复杂度 我先前博客大作业发的 模糊查找算法 就是如此,我那里是在计算一个匹配度的问题,通过相同定位到相同字母判定开

    2024年02月09日
    浏览(45)
  • 【NLP】有限自动机的KMP算法

    目录 一、说明 二、无策略直接匹配法 2.1  简单粗暴的无脑匹配: 2.2 跳过外循环的思路

    2024年02月08日
    浏览(39)
  • 不确定有穷自动机NFA的确定化

    从文件读入一个非确定有穷状态自动机(NFA),用子集法将其确定化,并输出一个确定化的有穷状态自动机(DFA)。 原理: 流程图如下: 具体代码实现: 这里为了实现图形可视化,使用了graphviz,下载完成Graphviz工具后,需将其添加至系统环境变量中,且需将其上移至Matl

    2024年02月07日
    浏览(36)
  • 100行python代码实现细胞自动机(康威生命游戏)

     英国数学家约翰·何顿·康威在1970年发明了细胞自动机,它属于一种仿真程序,通过设定一些基本的规则来模拟和显示的图像的自我进化,看起来颇似生命的出生和繁衍过程,故称为“生命游戏”。 完成效果 用到的第三方库 pygame 基本规则 康威生命游戏在网格上进行,有填

    2023年04月08日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包