常见各种类型的矩阵n次方求法

这篇具有很好参考价值的文章主要介绍了常见各种类型的矩阵n次方求法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

初等矩阵的n次方公式

1.倍乘类型

倍乘类型的初等矩阵(某一行乘以k),n次方就把这个位置的数字变为k的n次方

如:

常见各种类型的矩阵n次方求法

 A是一个初等矩阵,第二行乘以4的初等矩阵

那么:

常见各种类型的矩阵n次方求法

 2.互换类型

互换类型的初等矩阵,偶次方为单位矩阵,奇次方为其本身

如;

A是一个第一行和第二行互换的初等矩阵

常见各种类型的矩阵n次方求法

 A的奇数次方是它本身,如:

常见各种类型的矩阵n次方求法

A的偶数次方是单位矩阵,如:

常见各种类型的矩阵n次方求法

3.倍加类型

 初等矩阵的某一行加的是k倍,那么n次方就用这个位置的数字乘以n

如:

常见各种类型的矩阵n次方求法

 A是第一行的3倍加到第二行的初等矩阵

那么:

常见各种类型的矩阵n次方求法

 

 分块矩阵的n次方公式

见jhttp://t.csdn.cn/EIrem文章来源地址https://www.toymoban.com/news/detail-502316.html

到了这里,关于常见各种类型的矩阵n次方求法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分块矩阵的初等变换

            众所周知,线性代数是一门严谨却又不那么严谨的学科,我们常常从原始定义中得到高度抽象的结果,偶尔还能得到一些玄学结论。本人在学习线代课程时,无意中生发了这样一种想法:分块矩阵也可以进行初等变换吗?         我在计算分块行列式如 时,无

    2024年02月11日
    浏览(35)
  • 线性代数感悟之6 单位矩阵和初等矩阵

    最近在看 liuyubobobo 的  线性代数 课,感觉很妙,有些感悟记录一下~~~ ​  单位矩阵的特点:从左上角到右下角的对角线(称为主对角线)上的元素均为1。 使用行视角,将单位矩阵看成一个变化矩阵。 ​‘  那么 单位矩阵 第1行的作用: 将1行的数据保持不变,第2行,和

    2023年04月10日
    浏览(39)
  • 过渡矩阵、线性变换矩阵在对应基下坐标的求法

    在求过渡矩阵时尤其要注意的是过渡矩阵和哪个向量组相乘得另一个向量组。 一般情况下,若描述是:求A到B的过渡矩阵,则形式应当是B=AC,其中C为过渡矩阵。 下面的这个例题就是求过渡矩阵和基下的坐标。 下面的这个例子主要是求线性变换矩阵在相应的基下的坐标。

    2024年02月11日
    浏览(39)
  • 线性代数逆矩阵的求法

    在线性代数中,逆矩阵是一个非常重要且有趣的概念。一个 n 阶方阵 A 的逆矩阵,记作 A^-1,是指存在另一个 n 阶方阵 B,使得 A 和 B 的乘积等于单位矩阵 E,即: A * B = E 或者等价地: B * A = E 这里,E 表示 n 阶单位矩阵,其对角线元素全为 1,其他位置的元素全为 0。 逆矩阵

    2024年01月21日
    浏览(38)
  • 初等矩阵的逆矩阵如何“一眼就能看出”

    如 A是把第一行的-2倍加到第二行,B是把第一行的2倍加到第二行  AB=E,由此A和B互为逆矩阵 所以倍加类型的初等矩阵的逆矩阵就是加上原来相反倍数 如 A是第一行和第二行互换,B是第一行和第二行互换 AB=E,A和B互为逆矩阵 所以互换类型的初等矩阵的逆矩阵不变    A是第二

    2023年04月15日
    浏览(53)
  • 矩阵理论复习部分——线性代数(3)初等变换、逆矩阵

    一、初等变换3种方式 对调矩阵的两行(两列); 以 k ≠ 0 k not = 0 k  = 0 乘某一行(列)所有元素; 某一行(列)元素 k k k 倍加到另一行(列); 二、初等矩阵 初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。 左乘初等矩阵 = 行变换 右乘初等矩阵 = 列变换 初等矩

    2024年02月04日
    浏览(57)
  • 第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

    玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记,例见原文 已知: A r ∼ F A^r sim F A r ∼ F ,求可逆阵 P P P ,使 P A = F PA = F P A = F ( F F F 为 A A A 的行最简形) 方法:利用初等行变换,将矩阵A左边所乘初等矩阵相乘,从而得到可逆矩阵P. 步骤: (1)对矩阵A进行l次初等

    2024年02月13日
    浏览(43)
  • 【线性代数】矩阵特征值的快速求法

    本文讨论 3阶矩阵 的特征值的快速求法。 分为速写特征多项式和速解方程两部分。 速写特征多项式 不妨令: A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] boldsymbol{A}=left[begin{array}{lll} a_{11} a_{12} a_{13} \\\\ a_{21} a_{22} a_{23} \\\\ a_{31} a_{32} a_{33} end{array}right] A = ​ a 11 ​ a 21 ​ a 31 ​

    2024年02月03日
    浏览(43)
  • 描述二次型矩阵求法及二次型矩阵正定性判定

    1.二次型的矩阵的求法: 二次型f(x,y,z)=ax²+by²+cz²+dxy+exz+fyz,用矩阵表示的时候,矩阵的元素与二次型系数的对应关系为:A11=a,A22=b,A33=c,A12=A21=d/2,A13=A31=e/2,A23=A32=f/2。  2.二次型矩阵正定性判定  已知二次型 判定是否正定。 利用霍尔维茨定理:称对角线元是A的前k个

    2024年02月03日
    浏览(45)
  • 第三章,矩阵,09-线性方程组解的判断与求法、矩阵方程

    玩转线性代数(21)线性方程组解的判断与求法的笔记,相关证明以及例子见原文 对n元线性方程组 A x = b Ax=b A x = b ,A为系数矩阵, B = ( A ∣ b ) B=(A|b) B = ( A ∣ b ) 为增广矩阵,则有 (1) A x = b Ax=b A x = b 无解 ⇔ R ( A ) R ( A , b ) Leftrightarrow R(A)lt R(A,b) ⇔ R ( A ) R ( A , b ) ; (2)

    2024年02月13日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包