【知识图谱】python连接neo4j报错:py2neo.errors.ProtocolError: Cannot decode response content as JSON

这篇具有很好参考价值的文章主要介绍了【知识图谱】python连接neo4j报错:py2neo.errors.ProtocolError: Cannot decode response content as JSON。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

源代码如下
【知识图谱】python连接neo4j报错:py2neo.errors.ProtocolError: Cannot decode response content as JSON
报错信息:
从graph.run这里报错,报出一个JSon相关的错误,百思不得其解。

Traceback (most recent call last):
  File "D:\software\Python\Python37\lib\site-packages\py2neo\client\http.py", line 443, in from_json
    content = json_loads(data, object_hook=JSONHydrant.json_to_packstream)
  File "D:\software\Python\Python37\lib\json\__init__.py", line 361, in loads
    return cls(**kw).decode(s)
  File "D:\software\Python\Python37\lib\json\decoder.py", line 337, in decode
    obj, end = self.raw_decode(s, idx=_w(s, 0).end())
  File "D:\software\Python\Python37\lib\json\decoder.py", line 355, in raw_decode
    raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

解决方法:
需要加上一个name=“neo4j”,才能成功,如下

graph = Graph("http://localhost:7474",user= "neo4j",password = "zhang123",name="neo4j")

或者这样

graph = Graph("http://localhost:7474",auth=("neo4j","zhang123"),name="neo4j")

完整demo文章来源地址https://www.toymoban.com/news/detail-502414.html

from py2neo import Graph
#连接图数据库
graph = Graph("http://localhost:7474",user= "neo4j",password = "zhang123",name="neo4j")

cypher = "create (n:person {name : '老大',age : 18,length : 168})"
graph.run(cypher)

到了这里,关于【知识图谱】python连接neo4j报错:py2neo.errors.ProtocolError: Cannot decode response content as JSON的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于知识图谱的电影推荐系统——Neo4j&Python

    选择TMDB电影数据集,Netflix Prize 数据集下载。 也可直接从这里下载:链接: https://pan.baidu.com/s/1l6wjwcUzy5G_dIlVDbCkpw 提取码: pkq6 。 执行preproc.py文件,进行数据预处理,生成5个处理后的文件: 将上面数据预处理生成的5个文件,放入import文件夹中: 修改main.py中的driver,输入自己

    2024年02月15日
    浏览(50)
  • 【Neo4j与知识图谱】Neo4j的常用语法与一个简单知识图谱构建示例

    Neo4j是一种基于图形结构的NoSQL数据库,它采用了Cypher查询语言来查询和操作图形数据。下面是Neo4j中语法知识的详细总结和示例: 1.创建节点和关系 在Neo4j中,可以使用CREATE语句来创建节点和关系。下面是创建一个节点的示例: 这将创建一个标签为Person、属性为name和age的节

    2024年02月04日
    浏览(55)
  • 医疗知识图谱 neo4j

    开源项目: https://github.com/liuhuanyong/QASystemOnMedicalKG pip install pyahocorasick pip install py2neo 需要改的点: 1.改连接的方式 2.改读文件的方式 MedicalGraph 运行: build_medicalgraph.py 时间很长,几个小时 关闭neo4j客户端 导入文件 文件见网盘 1.首先通过ahocorasick提取出,属于哪种疾病

    2024年02月09日
    浏览(50)
  • Neo4j简单构建知识图谱实例

    目录  一、需要两组数据 二、提取所需专题数据 三、利用结巴分词将专题数据分词 四、连接并绘制知识图谱 五、消除重复节点及重复关系 六、结果展示 Ps:在使用Neo4j前,需要先在该安装路径文件下cmd运行,输入neo4j console 即可启动,可根据关闭时输入neo4j stop,如下图所示

    2023年04月12日
    浏览(58)
  • (知识图谱学习1)neo4j基础

    目录 一、neo4j安装与环境配置 官网:https://neo4j.com/download-center/ 下载社区版neo4j服务 neo4j环境变量配置 jdk下载 jdk版本: 启动neo4j 二、cypher语句基本增删改查 增 删除 改 查 三、Py2neo连接neo4j 安装pip install py2neo 连接neo4j 建立节点 建立关系 匹配节点 匹配关系 删除节点 删除关系

    2024年02月10日
    浏览(53)
  • 自学笔记——利用python开展Neo4j图数据库知识图谱构建和统计分析

    前言: 在上《高级统计学》时,老师提到结合所学知识点自行设计任务,并利用所学完成。 近期正好在学习python的编程和利用neo4j开展知识图谱构建,于是在征得老师同意下,尝试完成任务:“统计近6年社科基金,并构建知识图谱。”   入门小白自学笔记,请高手勿喷。

    2024年02月16日
    浏览(58)
  • 知识图谱构建: Neo4j 常见实例应用

    社交网络图:存储用户之间的关系和联系,如朋友关系、粉丝关系等。 产品推荐系统:利用用户的历史购买记录和评分数据,推荐相似的产品。 客户关系管理:存储企业和客户之间的联系,包括联系信息、交易记录等。 知识图谱:存储各种实体之间的关系,如人物、事件、

    2024年02月10日
    浏览(53)
  • 毕业设计:Vue3+FastApi+Python+Neo4j实现主题知识图谱网页应用——前言

    资源链接:https://download.csdn.net/download/m0_46573428/87796553 前言:毕业设计:Vue3+FastApi+Python+Neo4j实现主题知识图谱网页应用——前言_人工智能技术小白修炼手册的博客-CSDN博客 首页与导航:毕业设计:Vue3+FastApi+Python+Neo4j实现主题知识图谱网页应用——前端:首页与导航栏_人工智

    2024年02月14日
    浏览(48)
  • 基于neo4j的宠物知识图谱问答系统

    在当前数字化的时代,人工智能技术的迅速发展为信息检索和数据处理带来了革命性的变化。特别是在宠物领域,一个智能的宠物关系图谱问答系统能够为宠物爱好者提供全面、精准的信息服务。本文将详细介绍一个基于Python、Django、Flask、Neo4j以及py2neo等技术栈实现的宠物关

    2024年02月20日
    浏览(94)
  • 再相逢【知识图谱】中文医学知识图谱CMeKG,中文产科医学知识图谱COKG | 附:图数据库Neo4j下载安装教学(遇到问题并解决) + Neo4j基本操作

      无论结果如何,请相信那些你努力游向岸的日子都有它的意义。   🎯 作者主页 : 追光者♂ 🔥          🌸 个人简介 : 计算机专业硕士研究生 💖、 2022年CSDN博客之星人工智能领域TOP4 🌟、 阿里云社区特邀专家博主 🏅、 CSDN-人工智能领域新星创作者 🏆、 预期20

    2024年02月14日
    浏览(82)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包