【32单片机学习】(3)霍尔编码器减速直流电机控制及测速

这篇具有很好参考价值的文章主要介绍了【32单片机学习】(3)霍尔编码器减速直流电机控制及测速。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

1.实验现象

2.实验接线及原理图

接线图

原理图 

电机接线图

3.代码部分

1.主函数 

main.c

2.按键部分 

 key.c

 key.h

pwm代码 

 pwm.c

 pwm.h

电机驱动 

 motor.c 

 motor.h

 OLED显示

oled.c

oled.h 

编码器捕获部分

 encoder.c

 encoder.h

Tim2初始化

总结



前言

笔者使用的是JGB37-520减速直流电机,使用stm32定时器输出比较生成PWM控制电机输出,使用编码器接口对电机进行测速,并通过OLED显示PWM输出占空比和电机转速。如有错误敬请大佬们斧正。

1.实验现象

直流减速电机输出控制及测速

2.实验接线及原理图

接线图

【32单片机学习】(3)霍尔编码器减速直流电机控制及测速

原理图 

【32单片机学习】(3)霍尔编码器减速直流电机控制及测速

 

 电机接线图

【32单片机学习】(3)霍尔编码器减速直流电机控制及测速

3.代码部分

1.主函数 

main.c

#include "sys.h"
#include "key.h" 
#include "motor.h"
#include "encoder.h"  
#include "oled.h"
#include "tim2.h" 

int16_t Speed,Speed1,KeyNum,KeyCnt
 int main(void)
 {	  
	Motor_Init();
	OLED_Init();
	Encoder_Init();
	TIM2_Init();
	KEY_Init();
	OLED_ShowString(1,1,"Motor Speed:");//显示占空比
	OLED_ShowString(3,1,"Encoder Speed");//显示电机每分钟转速
	while(1)
	{
		KeyNum=Key();
		if(KeyNum==1)
		{
			switch(KeyCnt)//按键按下电机速度切换
			{
				case 0:KeyCnt++;Speed = 10;break;
				case 1:KeyCnt++;Speed = 20;break;
				case 2:KeyCnt++;Speed = 30;break;
				case 3:KeyCnt++;Speed = 40;break;
				case 4:KeyCnt++;Speed = 50;break;
				case 5:KeyCnt++;Speed = 60;break;
				case 6:KeyCnt++;Speed = 70;break;
				case 7:KeyCnt++;Speed = 80;break;
				case 8:KeyCnt++;Speed = 90;break;
				case 9:KeyCnt++;Speed = 100;break;
				case 10:KeyCnt++;Speed = 90;break;
				case 11:KeyCnt++;Speed = 80;break;
				case 12:KeyCnt++;Speed = 70;break;
				case 13:KeyCnt++;Speed = 60;break;
				case 14:KeyCnt++;Speed = 50;break;
				case 15:KeyCnt++;Speed = 40;break;
				case 16:KeyCnt++;Speed = 30;break;
				case 17:KeyCnt++;Speed = 20;break;
				case 18:KeyCnt++;Speed = 10;break;
				case 19:KeyCnt=0;Speed = 0;break;
			}			
		}	
		Motor_SetSpeed(Speed);
		OLED_ShowSignedNum(2,1,Speed,3);
		OLED_ShowSignedNum(4,1,Speed1/44,5);//电机一圈11个脉冲,每个脉冲有四次边沿触发
	}
 }

void TIM2_IRQHandler(void)
{
	static uint16_t Tim2Count0,Tim2Count1;
	if(TIM_GetITStatus(TIM2,TIM_IT_Update)==SET)
	{
		Tim2Count0++;
		if(Tim2Count0>=1000)//定时器2每隔1s刷新一次脉冲个数
		{
			Speed1=Encoder_Get();
			Tim2Count0=0;
		}
		Tim2Count1++;
		if(Tim2Count1>=20)//定时器2每隔20ms扫描一次按键消抖
		{
			Key_Loop();
			Tim2Count1=0;
		}
		TIM_ClearITPendingBit(TIM2,TIM_IT_Update);
	}
}

2.按键部分 

 key.c

按键部分使用定时器进行消抖,不会影响到主函数代码的执行。

#include "key.h"                  // Device header

uint8_t Key_KeyNumber;

void KEY_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;//定义一个GPIO初始化结构体GPIO_InitStruct
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_1;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOB,&GPIO_InitStructure);
}

uint8_t Key(void)
{
	uint8_t Temp=0;
	Temp=Key_KeyNumber;
	Key_KeyNumber=0;
	return Temp;
}

uint8_t Key_GetState(void)
{
	uint8_t KeyNumber=0;
	if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1)==0){KeyNumber=1;}
	else KeyNumber=0;
	return KeyNumber;
}


void Key_Loop(void)
{
	static uint8_t NowState,LastState;
	LastState=NowState;				//按键状态更新
	NowState=Key_GetState();		//获取当前按键状态
	//如果上个时间点按键按下,这个时间点未按下,则是松手瞬间,以此避免消抖和松手检测
	if(LastState==1 && NowState==0)
	{
		Key_KeyNumber=1;
	}
}

void TIM3_IRQHandler(void)
{
	static uint16_t Tim3Count0;
	if(TIM_GetITStatus(TIM3,TIM_IT_Update)==SET)
	{
		Tim3Count0++;
		if(Tim3Count0>=10)
		{
			Key_Loop();
			Tim3Count0=0;
		}
		TIM_ClearITPendingBit(TIM3,TIM_IT_Update);
	}
}

key.h

#ifndef __KEY_H
#define __KEY_H

#include "sys.h"
#define KEY1 PAin(4)	// PA4

void KEY_Init(void);
void Key_Loop(void);
uint8_t Key_GetState(void);	
uint8_t Key(void);

#endif

3.pwm代码 

 pwm.c

#include "pwm.h" 	

void PWM_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_OCInitTypeDef TIM_OCInitStructure;
	
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	
	TIM_OCStructInit(&TIM_OCInitStructure);
	
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	TIM_InternalClockConfig(TIM2);
	
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period=100-1;//20khz周期
	TIM_TimeBaseInitStructure.TIM_Prescaler=36-1;
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0;
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
	
	
	TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;
	TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;
	TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;
	TIM_OCInitStructure.TIM_Pulse=0;
	TIM_OC3Init(TIM2,&TIM_OCInitStructure);
	
	TIM_Cmd(TIM2,ENABLE);
	
}

void PWM_SetCompare3(uint16_t Compare)
{
	TIM_SetCompare3(TIM2, Compare);
}

pwm.h

#ifndef __PWM_H
#define __PWM_H	 
#include "sys.h"

void PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);
		 				    
#endif

4.电机驱动 

motor.c 

#include "motor.h"               
#include "pwm.h"

void Motor_Init(void)
{
	 GPIO_InitTypeDef  GPIO_InitStructure;
		
	 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	 //使能PB,PE端口时钟
		
	 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_5;				 //Motor 方向控制脚
	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
	 GPIO_Init(GPIOA, &GPIO_InitStructure);	
	 PWM_Init();
}

void Motor_SetSpeed(int8_t Speed)
{
	if (Speed >= 0)
	{
		GPIO_SetBits(GPIOA, GPIO_Pin_4);
		GPIO_ResetBits(GPIOA, GPIO_Pin_5);
		PWM_SetCompare3(Speed/10);
	}
	else
	{
		GPIO_ResetBits(GPIOA, GPIO_Pin_4);
		GPIO_SetBits(GPIOA, GPIO_Pin_5);
		PWM_SetCompare3(-Speed/10);
	}
}

 motor.h

#ifndef __Motor_H
#define __Motor_H	 
#include "sys.h"

#define Motor_Foreward PAout(4)	
#define Motor_Reverse PAout(5)
void Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);
		 				    
#endif

5. OLED显示

oled.c

#include "stm32f10x.h"
#include "oled.h"
#include "OLED_Font.h"

/*引脚配置*/
#define OLED_W_SCL(x)		GPIO_WriteBit(GPIOB, GPIO_Pin_8, (BitAction)(x))
#define OLED_W_SDA(x)		GPIO_WriteBit(GPIOB, GPIO_Pin_9, (BitAction)(x))

/*引脚初始化*/
void OLED_I2C_Init(void)
{
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
 	GPIO_Init(GPIOB, &GPIO_InitStructure);
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
 	GPIO_Init(GPIOB, &GPIO_InitStructure);
	
	OLED_W_SCL(1);
	OLED_W_SDA(1);
}

/**
  * @brief  I2C开始
  * @param  无
  * @retval 无
  */
void OLED_I2C_Start(void)
{
	OLED_W_SDA(1);
	OLED_W_SCL(1);
	OLED_W_SDA(0);
	OLED_W_SCL(0);
}

/**
  * @brief  I2C停止
  * @param  无
  * @retval 无
  */
void OLED_I2C_Stop(void)
{
	OLED_W_SDA(0);
	OLED_W_SCL(1);
	OLED_W_SDA(1);
}

/**
  * @brief  I2C发送一个字节
  * @param  Byte 要发送的一个字节
  * @retval 无
  */
void OLED_I2C_SendByte(uint8_t Byte)
{
	uint8_t i;
	for (i = 0; i < 8; i++)
	{
		OLED_W_SDA(Byte & (0x80 >> i));
		OLED_W_SCL(1);
		OLED_W_SCL(0);
	}
	OLED_W_SCL(1);	//额外的一个时钟,不处理应答信号
	OLED_W_SCL(0);
}

/**
  * @brief  OLED写命令
  * @param  Command 要写入的命令
  * @retval 无
  */
void OLED_WriteCommand(uint8_t Command)
{
	OLED_I2C_Start();
	OLED_I2C_SendByte(0x78);		//从机地址
	OLED_I2C_SendByte(0x00);		//写命令
	OLED_I2C_SendByte(Command); 
	OLED_I2C_Stop();
}

/**
  * @brief  OLED写数据
  * @param  Data 要写入的数据
  * @retval 无
  */
void OLED_WriteData(uint8_t Data)
{
	OLED_I2C_Start();
	OLED_I2C_SendByte(0x78);		//从机地址
	OLED_I2C_SendByte(0x40);		//写数据
	OLED_I2C_SendByte(Data);
	OLED_I2C_Stop();
}

/**
  * @brief  OLED设置光标位置
  * @param  Y 以左上角为原点,向下方向的坐标,范围:0~7
  * @param  X 以左上角为原点,向右方向的坐标,范围:0~127
  * @retval 无
  */
void OLED_SetCursor(uint8_t Y, uint8_t X)
{
	OLED_WriteCommand(0xB0 | Y);					//设置Y位置
	OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4));	//设置X位置低4位
	OLED_WriteCommand(0x00 | (X & 0x0F));			//设置X位置高4位
}

/**
  * @brief  OLED清屏
  * @param  无
  * @retval 无
  */
void OLED_Clear(void)
{  
	uint8_t i, j;
	for (j = 0; j < 8; j++)
	{
		OLED_SetCursor(j, 0);
		for(i = 0; i < 128; i++)
		{
			OLED_WriteData(0x00);
		}
	}
}

/**
  * @brief  OLED显示一个字符
  * @param  Line 行位置,范围:1~4
  * @param  Column 列位置,范围:1~16
  * @param  Char 要显示的一个字符,范围:ASCII可见字符
  * @retval 无
  */
void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char)
{      	
	uint8_t i;
	OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8);		//设置光标位置在上半部分
	for (i = 0; i < 8; i++)
	{
		OLED_WriteData(OLED_F8x16[Char - ' '][i]);			//显示上半部分内容
	}
	OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8);	//设置光标位置在下半部分
	for (i = 0; i < 8; i++)
	{
		OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]);		//显示下半部分内容
	}
}

/**
  * @brief  OLED显示字符串
  * @param  Line 起始行位置,范围:1~4
  * @param  Column 起始列位置,范围:1~16
  * @param  String 要显示的字符串,范围:ASCII可见字符
  * @retval 无
  */
void OLED_ShowString(uint8_t Line, uint8_t Column, char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i++)
	{
		OLED_ShowChar(Line, Column + i, String[i]);
	}
}

/**
  * @brief  OLED次方函数
  * @retval 返回值等于X的Y次方
  */
uint32_t OLED_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;
	while (Y--)
	{
		Result *= X;
	}
	return Result;
}

/**
  * @brief  OLED显示数字(十进制,正数)
  * @param  Line 起始行位置,范围:1~4
  * @param  Column 起始列位置,范围:1~16
  * @param  Number 要显示的数字,范围:0~4294967295
  * @param  Length 要显示数字的长度,范围:1~10
  * @retval 无
  */
void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i++)							
	{
		OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0');
	}
}

/**
  * @brief  OLED显示数字(十进制,带符号数)
  * @param  Line 起始行位置,范围:1~4
  * @param  Column 起始列位置,范围:1~16
  * @param  Number 要显示的数字,范围:-2147483648~2147483647
  * @param  Length 要显示数字的长度,范围:1~10
  * @retval 无
  */
void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length)
{
	uint8_t i;
	uint32_t Number1;
	if (Number >= 0)
	{
		OLED_ShowChar(Line, Column, '+');
		Number1 = Number;
	}
	else
	{
		OLED_ShowChar(Line, Column, '-');
		Number1 = -Number;
	}
	for (i = 0; i < Length; i++)							
	{
		OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0');
	}
}

/**
  * @brief  OLED显示数字(十六进制,正数)
  * @param  Line 起始行位置,范围:1~4
  * @param  Column 起始列位置,范围:1~16
  * @param  Number 要显示的数字,范围:0~0xFFFFFFFF
  * @param  Length 要显示数字的长度,范围:1~8
  * @retval 无
  */
void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
	uint8_t i, SingleNumber;
	for (i = 0; i < Length; i++)							
	{
		SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16;
		if (SingleNumber < 10)
		{
			OLED_ShowChar(Line, Column + i, SingleNumber + '0');
		}
		else
		{
			OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A');
		}
	}
}

/**
  * @brief  OLED显示数字(二进制,正数)
  * @param  Line 起始行位置,范围:1~4
  * @param  Column 起始列位置,范围:1~16
  * @param  Number 要显示的数字,范围:0~1111 1111 1111 1111
  * @param  Length 要显示数字的长度,范围:1~16
  * @retval 无
  */
void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i++)							
	{
		OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0');
	}
}

/**
  * @brief  OLED初始化
  * @param  无
  * @retval 无
  */
void OLED_Init(void)
{
	uint32_t i, j;
	
	for (i = 0; i < 1000; i++)			//上电延时
	{
		for (j = 0; j < 1000; j++);
	}
	
	OLED_I2C_Init();			//端口初始化
	
	OLED_WriteCommand(0xAE);	//关闭显示
	
	OLED_WriteCommand(0xD5);	//设置显示时钟分频比/振荡器频率
	OLED_WriteCommand(0x80);
	
	OLED_WriteCommand(0xA8);	//设置多路复用率
	OLED_WriteCommand(0x3F);
	
	OLED_WriteCommand(0xD3);	//设置显示偏移
	OLED_WriteCommand(0x00);
	
	OLED_WriteCommand(0x40);	//设置显示开始行
	
	OLED_WriteCommand(0xA1);	//设置左右方向,0xA1正常 0xA0左右反置
	
	OLED_WriteCommand(0xC8);	//设置上下方向,0xC8正常 0xC0上下反置

	OLED_WriteCommand(0xDA);	//设置COM引脚硬件配置
	OLED_WriteCommand(0x12);
	
	OLED_WriteCommand(0x81);	//设置对比度控制
	OLED_WriteCommand(0xCF);

	OLED_WriteCommand(0xD9);	//设置预充电周期
	OLED_WriteCommand(0xF1);

	OLED_WriteCommand(0xDB);	//设置VCOMH取消选择级别
	OLED_WriteCommand(0x30);

	OLED_WriteCommand(0xA4);	//设置整个显示打开/关闭

	OLED_WriteCommand(0xA6);	//设置正常/倒转显示

	OLED_WriteCommand(0x8D);	//设置充电泵
	OLED_WriteCommand(0x14);

	OLED_WriteCommand(0xAF);	//开启显示
		
	OLED_Clear();				//OLED清屏
}


oled.h 

#ifndef __OLED_H
#define __OLED_H

void OLED_Init(void);
void OLED_Clear(void);
void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char);
void OLED_ShowString(uint8_t Line, uint8_t Column, char *String);
void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length);
void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);

#endif

6.编码器捕获部分

encoder.c

#include "encoder.h"              


void Encoder_Init(void)
{
	
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
	
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_Period=65536-1;
	TIM_TimeBaseInitStructure.TIM_Prescaler=1-1;
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0;
	TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure);
	
	TIM_ICInitTypeDef TIM_ICInitStructure;
	TIM_ICStructInit(&TIM_ICInitStructure);
	TIM_ICInitStructure.TIM_Channel=TIM_Channel_1;
	TIM_ICInitStructure.TIM_ICFilter=0xf;
	TIM_ICInit(TIM3,&TIM_ICInitStructure);
	
	TIM_ICInitStructure.TIM_Channel=TIM_Channel_2;
	TIM_ICInitStructure.TIM_ICFilter=0xf;
	TIM_ICInit(TIM3,&TIM_ICInitStructure);
	
	TIM_EncoderInterfaceConfig(TIM3,TIM_EncoderMode_TI12,TIM_ICPolarity_Rising,TIM_ICPolarity_Rising);
	
	TIM_Cmd(TIM3,ENABLE);
}



int16_t Encoder_Get(void)
{
	int16_t Temp;
	Temp=TIM_GetCounter(TIM3);
	TIM_SetCounter(TIM3,0);
	return Temp;
}

 encoder.h

#ifndef __ENCODER_H
#define __ENCODER_H	 
#include "sys.h"

void Encoder_Init(void);
int16_t Encoder_Get(void);
		 				    
#endif

7.Tim2初始化

 tim2.c

#include "tim2.h" 

void TIM2_Init(void)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	
	TIM_InternalClockConfig(TIM2);
	
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period=10-1;
	TIM_TimeBaseInitStructure.TIM_Prescaler=7200-1;
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0;
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
	
	TIM_ClearFlag(TIM2,TIM_IT_Update);

	TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

	NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority=3;
	NVIC_Init(&NVIC_InitStructure);
	
	TIM_Cmd(TIM2,ENABLE);
}


总结


本文仅仅简单介绍了使用STM32定时器输出比较功能产生PWM波,控制电机运动,其次是使用定时器的输入捕获功能对直流电机进行测速。

通过本次学习对于直流减速电机、霍尔编码器、定时器输入捕获和输出比较功能有了一定的了解。

本文有不足之处还请大佬指正。文章来源地址https://www.toymoban.com/news/detail-502673.html

到了这里,关于【32单片机学习】(3)霍尔编码器减速直流电机控制及测速的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 51单片机数字旋转编码器内部原理应用与实现------day5

    51单片机数字旋转编码器内部原理应用与实现 1.数字旋转编码器 可实现按下确认,旋转加减。 不按状态为高电平,按下为低电平。 时序图: 顺时针 逆时针 A B A B 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 电路原理图如下所示: 实现程序如下图所示:效果不错,无丢数情况,很顺畅。功能顺时

    2024年02月12日
    浏览(43)
  • stm32霍尔编码器电机测速原理

            本次选用的编码器电机为13线的霍尔编码器电机,电机减速比为30:1,转动一圈输出13*30=390个脉冲。轮胎直径为75mm,轮胎周长为pi*d=3*75=225mm.定时器采用四倍频计数,则一圈输出390*4=1560个脉冲。具体编码器知识这里就不多说了。          根据测速原理:假设编

    2024年02月15日
    浏览(50)
  • 霍尔编码器电机与TB6612电机驱动相关学习

    简单粗暴的说下,电机-电机驱动-单片机该怎么连线。 先简单认识一下霍尔编码器电机 以上选用的平衡小车之家的,市面上基本都跟这个差不了多少。 电机线-+这两个引脚 与电机驱动相连接 来控制电机的正反转(自己的浅显理解)  编码器的AB相 连接单片机(定时器)  编

    2023年04月09日
    浏览(39)
  • 记录智能车自制霍尔编码器(PCB篇)

    前文论述了智能车独轮车组自制编码器的可行性,昨天下单编码器今天就到货了,在此记录一下自制(抄板)年轻人的第一款编码器的历程。 到货的编码器  这种商品店家自然是不可能提供原理图和PCB,能有尺寸图已经是非常好了。所以主要靠自己观察,好在构造本就很简单,

    2024年02月06日
    浏览(48)
  • 霍尔增量式编码器左右车轮线速度的计算

    对于霍尔式编码器的左右轮线速度计算: 首先线速度=距离s / 时间 t 要获得距离S ,也就是轮子在一段时间内跑过的距离。要先知道一下两个参数: 1.轮子的半径 r 2.轮子转动一圈的脉冲数 cnt 轮子转动一圈的脉冲数:如电机我们选用减速比为1:90的TT直流减速电机,编码器为

    2024年02月15日
    浏览(41)
  • 【嵌入式学习-STM32F103-TIM-编码器接口】

    编码器测速相当于测频法测正交脉冲的频率,CNT计次,每隔一段时间取一次计次。高级,它是带方向的计次。 通过定时器的编码器接口来实现自动计次。之前的代码是通过触发外部中断,然后在中断函数里手动进行计次。使用编码器接口的好处就是节约软件资源。对于频繁执

    2024年02月01日
    浏览(49)
  • 【STM32】STM32学习笔记-对射式红外传感器计次 旋转编码器计次(12)

    相关头文件: misc.h 1.1 NVIC_PriorityGroupConfig函数 1.2 NVIC_PriorityGroup类型 1.3 NVIC_Init函数 1.4 NVIC_InitTypeDef类型 NVIC_IRQChannel取值 成员NVIC_IRQChannelPreemptionPriority可赋的值:最大取值15,具体有上面设置的优先级组中规定的位数决定 成员NVIC_IRQChannelSubPriority可赋的值:最大取值15,具体有

    2024年01月15日
    浏览(45)
  • 7、江科大stm32视频学习笔记——中断的应用:对射式红外传感器计次&旋转编码器计次

    目录 1、标志位函数 2、 初始化的中断的步骤 3、对射式红外传感器计次 (1)接线图 (2)CountSensor.c (3)main.c 4、旋转编码器计次 (1)接线图(旋转编码器接在PB1、PB0引脚) (2)Encoder.c (3)main.c 5、建议 //在 主程序 中查看标志位和清楚标志位,用以下两个函数,能不能

    2024年02月11日
    浏览(46)
  • STM32学习笔记(三)丨中断系统丨EXTI外部中断(对射式红外传感器计次、旋转编码器计次)

    ​  本次课程采用单片机型号为STM32F103C8T6。 ​  课程链接:江科大自化协 STM32入门教程   往期笔记链接:   STM32学习笔记(一)丨建立工程丨GPIO 通用输入输出   STM32学习笔记(二)丨STM32程序调试丨OLED的使用   本篇文章的内容我愿称之为 史诗级副本 (感觉

    2024年02月16日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包