Kafka消息积压的原因和处理的方法

这篇具有很好参考价值的文章主要介绍了Kafka消息积压的原因和处理的方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

        Kafka作为目前主流的消息中间件,被广泛的应用在了生产环境中。消息积压是日常生产经常遇到的问题,下面我们来展开了说一下。文章来源地址https://www.toymoban.com/news/detail-502857.html

积压原因

  1. 上游数据激增(生产侧原因):由于业务系统,访问量徒增,如热点事件,热门活动等,导致了大量的数据涌入业务系统,有可能导致消息积压
  2. consumer程序挂掉(消费侧原因):由于下游consumer程序故障也会导致大量消息未消费,从而造成消息积压。
  3. kafka数据倾斜问题: producer 写入数据时候设置的key 发生数据倾斜,导致过度数据写入少量partition。

解决方法

  1. 扩容consumer,增加消费能力,从而处理积压数据。
  2. 如果发现是数据倾斜问题,可以在producer测加盐,环节倾斜问题。
  3. 部分场景下,历史数据是没有意义的,比如:股价价格,天气数据,可以重置consumer的offset,直接从latest 消费。

到了这里,关于Kafka消息积压的原因和处理的方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kafka顺序消费以及消息积压问题

    什么场景下需要顺序消费? 比如说:订单有很多状态,比如:下单(未支付)、完成(已支付)、撤销等,不可能下单的消息都没读取到,就先读取支付或撤销的消息吧,要保证消息顺序消费 如何保证顺序消费? kafka的topic是无序的,但是一个topic包含多个partition, 每个pa

    2024年04月29日
    浏览(44)
  • 记一次kafka消息积压的排查

    kafka消息积压报警,首先进行了自查,这个现象频频出现,之前每次都是先重新分配分区或者回溯(消息可丢弃防止大量积压消费跟不上)。 根据手册首先排查下消息拉取是否正常,看到了消息拉取线程是waiting状态,然后看到kafka这块逻辑是消费线程阻塞了拉取线程。 对比了

    2024年03月24日
    浏览(54)
  • 带你了解RabbitMQ:消息丢失、重复、积压的原因及其解决方案

    前言 首先说一点,企业中最常用的实际上既不是RocketMQ,也不是Kafka,而是RabbitMQ。 RocketMQ很强大,但主要是阿里推广自己的云产品而开源出来的一款消息队列,其实中小企业用RocketMQ的没有想象中那么多。 深层次的原因在于兔宝在中小企业普及更早,经受的考验也更久,很容

    2024年02月04日
    浏览(36)
  • kafka(五)大数量消息持续积压几个小时如何解决

          发生了线上故障,几千万条数据在 MQ 里积压很久。是修复 consumer 的问题,让他恢 复消费速度,然后等待几个小时消费完毕?这是个解决方案。不过有时候我们还会进行临时 紧急扩容。        一个消费者一秒是 1000 条,一秒 3 个消费者是 3000 条,一分钟是 18 万条。

    2024年02月13日
    浏览(41)
  • Kafka为什么在消息积压时不能直接通过消费者水平扩容来提升消费速度?

    我们知道当消息生产者生产的速度快于消费者的消费速度时,会产生大量的消息积压,大多数人的想法是增加消费者的数量来提升消费速度,这个想法在RocketMQ中是可行的,但是在Kafka中不一定可行。为了更方便地分析问题,我们先忽略消费者组的设计,在增加消费者之前,架

    2024年01月22日
    浏览(50)
  • Kafka消息发送失败的常见原因及解决方案

    1.1、网络故障 网络故障是Kafka消息发送失败的最常见原因之一。当网络出现故障时,Kafka就无法将消息发送到目标主题或分区。 解决方法: - 检查网络连接是否正常。 - 增加Kafka生产者的重试次数和超时时间。 1.2、分区副本不可用 如果Kafka生产者将消息发送到一个不可用的分

    2024年02月03日
    浏览(63)
  • Kafka消息丢失:原因、解决方案和零丢失的配置

    在使用Apache Kafka作为分布式消息系统时,消息丢失是一种常见的问题。消息丢失可能会导致数据不一致或功能故障,因此对于许多应用程序来说是不可接受的。本文将介绍Kafka消息丢失的原因、解决方案以及如何配置Kafka以实现零丢失。 Kafka消息丢失可能由多种原因引起。下面

    2024年02月13日
    浏览(34)
  • 【消息中间件】详解mq消息积压

    作者简介 目录 1.产生原因 2.解决办法 2.1.事前处理机制 2.2.事中处理机制 2.3.事后处理机制 消息积压(Message Backlog)指的是在消息队列(MQ)系统中等待被处理的消息数量超过了正常的处理速度,导致消息在队列中积压堆积的情况。 消息积压的常见表现: 系统资源使用率上升

    2024年02月07日
    浏览(47)
  • RabbitMQ清除积压消息/管理界面出现 Unacked 消息

    1.问题: rabbitmq的生产者端循环产生了多条消息给消费者,而消费者无法及时将消息处理掉,在消费端积压了多条消息(消费失败的时候,消息队列会一直重复的发送消息,导致程序死循环)需要清理项目因为错误而产生的积压消息队列。 2.原因: 消息接收方因退出企业,账

    2024年02月09日
    浏览(38)
  • Rabbitmq消息积压问题如何解决?

    一、 增加处理能力         优化系统架构、增加服务器资源、采用负载均衡等手段,以提高系统的 处理能力和并发处理能力 。通过增加服务器数量或者优化代码,确保系统能够及时处理所有的消息。 二、 异步处理         将消息的处理过程设计为 异步执行 ,即接

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包