Colmap 实用教程 —— 整体介绍

这篇具有很好参考价值的文章主要介绍了Colmap 实用教程 —— 整体介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

https://colmap.github.io/index.html

工程文件结构

+── images # 对应重建图片数据集
│   +── image1.jpg
│   +── image2.jpg
│   +── ...
+── sparse # 稀疏重建结果
│   +── 0
│   │   +── cameras.bin
│   │   +── images.bin
│   │   +── points3D.bin
│   +── ...
+── dense # 稠密重建结果
│   +── 0
│   │   +── images # 去畸变图像
│   │   +── sparse
│   │   +── stereo
│   │   +── fused.ply # 稠密点云
│   │   +── meshed-poisson.ply
│   │   +── meshed-delaunay.ply
│   +── ...
+── database.db # 图像提取的特征相关信息
+── project.ini # 项目信息文件

重建图像采集要求

  • 获取丰富纹理的图像。避免完全无纹理的区域,比如白墙和空的桌子。如果物体本身没有足够的背景,可以考虑增加待纹理的背景。
  • 图像的光照条件尽可能保持一致。避免高的动态范围,比如逆光图片或者透过门窗的图片。同时避免有光泽的表面的镜面反射。
  • 图像之间具有较高的视觉重叠。确保每个物体至少在三张图像中可见,而且越多越好。
  • 从不同视角获取图像。不要维持位置不变只旋转相机,即每次拍照后都要移动一段距离。同时,尽量从相对相似的角度获得足够的图像。不过并不是更多的图像就更好,这可能会导致重建过程缓慢。如果使用视频作为输入,请考虑对帧速率进行下采样。

相机模型

Colmap 实现了不同的相机模型。不过如果相机内参未知,最好还是使用最简单的相机模型,其已经能够很好的解决畸变效应。

  • SIMPLE_PINHOLE, PINHOLE:适用于已知无畸变的图像。两个模型分别对应于一个统一焦距和两个分离焦距。不过即使是无畸变图像,Colmap 还是会尝试使用更复杂的相机模型去优化相机内参。
  • SIMPLE_RADIAL, RADIAL:适用于内参位姿且每张图像来自于不同的相机标定,比如互联网图像。两个模型都是 Opencv 模型的简化版本,分别使用一个和两个参数只建模了径向畸变。
  • OPENCV, FULL_OPENCV:适用于已知标定参数的情况。如果多张图像共享内参,可以使用 Colmap 进行进一步优化;不过如果每张图像具有不同的内参,自动估计大概率会失败。
  • SIMPLE_RADIAL_FISHEYE, RADIAL_FISHEYE, OPENCV_FISHEYE, FOV, THIN_PRISM_FISHEYE:适用于鱼眼镜头,同时所有其他的模型都不能真正地建模鱼眼镜头的畸变。其中 FOV 被 Google Tango 项目采用(必须确保不要将 omega 初始化为 0)

特征提取与匹配

特征提取

Colmap 可以使用 GPU 或者 CPU 提取 SIFT 特征。GPU 版本需要一个额外的显示器,因此 CPU 版本更适合于服务器使用。通常情况下,GPU版本是性能更佳。因为它具有定制的特征检测模式,在高对比度图像的情况下,该模式通常会产生更高质量的特征。

如果希望导入现有特征,每张图像必须具有一个对应的 text 文件,像 /path/to/image1.jpg and /path/to/image1.jpg.txt 这样。对应文件内容如下

NUM_FEATURES 128
X Y SCALE ORIENTATION D_1 D_2 D_3 ... D_128
...
X Y SCALE ORIENTATION D_1 D_2 D_3 ... D_128

4 128
1.2 2.3 0.1 0.3 1 2 3 4 ... 21
2.2 3.3 1.1 0.3 3 2 3 2 ... 32
0.2 1.3 1.1 0.3 3 2 3 2 ... 2
1.2 2.3 1.1 0.3 3 2 3 2 ... 3

特征匹配

Colmap 提供了多样的特征匹配方式,不同的匹配方式有不同的适用场景。

  • exhaustive_matcher:针对少量图像(几百张量级),可以获得足够快且最好的重建结果。它将每张图像与其余所有图像进行匹配,不过 block size 可能限制同时加载到内存中的图像数量。
  • sequential_matcher:针对顺序采集的视频图像,由于相邻帧存在视觉上的重叠且没有必要进行完全匹配,它只匹配视频流中的相邻帧。同时,这种匹配方式能够基于 vocabulary tree 进行回环检测。最后,帧之间的前后关系由图像文件名给定,与数据集中的存储顺序无关。
  • vocab_tree_matcher:针对大量图像(几千帧量级),可以通过提供 vocabulary tree 从而快速检索视觉上最相近的图像进行匹配。
  • spatial_matcher:针对能够提供准确定位信息的图像,可以通过对应图像采集时的 GPS 信息从而仅匹配空间位置上相近的图像。
  • transitive_matcher:基于传递规则使用已有的特征匹配关系确定更完全的匹配图,即 A 与 B 匹配,B 与 C 匹配,那将直接匹配 A 和 C。
  • Custom Matching:通过 text 文件指定图像的匹配关系,如果是导入的特征可以进一步指定两张图像之间特征的匹配关系。

数据库格式 —— database.db

database.db 文件中存储着以下关系表:

  • cameras:包含相机内参,通过 ID 索引
  • images:包含相机外参,通过 ID 索引
  • keypoints:检测到的关键点
  • descriptors:对应关键点的描述符
  • matches:特征匹配结果
  • two_view_geometries:几何验证结果

重建结果

稀疏重建

+── sparse # 稀疏重建结果
│   +── 0
│   │   +── cameras.bin
│   │   +── images.bin
│   │   +── points3D.bin

 其中既可以通过二进制文件表示,也可以通过 text 文件表示,其中具体内容细节如下:

  • cameras.bin\cameras.txt:
# Camera list with one line of data per camera:
#   CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]
# Number of cameras: 3
1 SIMPLE_PINHOLE 3072 2304 2559.81 1536 1152
2 PINHOLE 3072 2304 2560.56 2560.56 1536 1152
3 SIMPLE_RADIAL 3072 2304 2559.69 1536 1152 -0.0218531

最后的相机参数依赖不同的 distortion model,其中 2559.81 1536 1152 分别表示焦距和 principal point 的像素位置。

  • images.bin\images.txt:
# Image list with two lines of data per image:
#   IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME
#   POINTS2D[] as (X, Y, POINT3D_ID)
# Number of images: 2, mean observations per image: 2
1 0.851773 0.0165051 0.503764 -0.142941 -0.737434 1.02973 3.74354 1 P1180141.JPG
2362.39 248.498 58396 1784.7 268.254 59027 1784.7 268.254 -1
2 0.851773 0.0165051 0.503764 -0.142941 -0.737434 1.02973 3.74354 1 P1180142.JPG
1190.83 663.957 23056 1258.77 640.354 59070

第一行中的 QW, QX, QY, QZ 为图像拍摄时相机的外参的四元数(使用 Hamilton 假设,符合 Eigen 中的定义),TX, TY, TZ 为对应外参的平移向量。

第二行每三个数表示一个图像关键点,其中前两个值 X,Y 分别对应关键点在图像中的像素坐标,第三个值 POINT3D_ID 为对应关键点对应的三维重建点 ID,-1 表示没有对应三维点。

  • points.bin\points.txt:
# 3D point list with one line of data per point:
#   POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)
# Number of points: 3, mean track length: 3.3334
63390 1.67241 0.292931 0.609726 115 121 122 1.33927 16 6542 15 7345 6 6714 14 7227
63376 2.01848 0.108877 -0.0260841 102 209 250 1.73449 16 6519 15 7322 14 7212 8 3991
63371 1.71102 0.28566 0.53475 245 251 249 0.612829 118 4140 117 4473

ERROR 为三维点的综合重投影误差;TRACK[] 每两个数表示三维点对应的一个图像二维特征点,分别对应图像 ID 和 这张图像的二维特征点 ID。 

稠密重建

+── images # 去畸变图像
│   +── image1.jpg
│   +── image2.jpg
│   +── ...
+── sparse # 基于去畸变图像的稀疏重建结果
│   +── cameras.txt
│   +── images.txt
│   +── points3D.txt
+── stereo # 立体重建的结果
│   +── consistency_graphs
│   │   +── image1.jpg.photometric.bin
│   │   +── image1.jpg.geometric.bin
│   │   +── image2.jpg.photometric.bin
│   │   +── image2.jpg.geometric.bin
│   │   +── ...
│   +── depth_maps # 图像每个像素点的深度图
│   │   +── image1.jpg.photometric.bin
│   │   +── image1.jpg.geometric.bin
│   │   +── image2.jpg.photometric.bin
│   │   +── image2.jpg.geometric.bin
│   │   +── ...
│   +── normal_maps # 图像每个像素点的法线贴图
│   │   +── image1.jpg.photometric.bin
│   │   +── image1.jpg.geometric.bin
│   │   +── image2.jpg.photometric.bin
│   │   +── image2.jpg.geometric.bin
│   │   +── ...
│   +── patch-match.cfg
│   +── fusion.cfg
+── fused.ply # fusion 的结果
+── meshed-poisson.ply # poisson mesh 的结果 
+── meshed-delaunay.ply # delaunay mesh 的结果
+── run-colmap-geometric.sh # 基于几何的稠密重建代码
+── run-colmap-photometric.sh # 基于视觉的稠密重建代码

The consistency graph defines, for all pixels in an image, the source images a pixel is consistent with. (没理解 o_0)。文章来源地址https://www.toymoban.com/news/detail-503173.html

到了这里,关于Colmap 实用教程 —— 整体介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • colmap 初体验🫠🎶

    安装:Installation — COLMAP 3.9-dev documentation 使用:Tutorial — COLMAP 3.9-dev documentation 下载一个小猫的RGB数据集 THU-MVS: Multi-View 3D Reconstruction Datasets 创建 project_cat 文件夹,把图片放 project_cat/images 下 运行 COLMAP.bat 启动程序,官方文档中有一些实用的操作说明:Graphical User Interface —

    2024年02月08日
    浏览(54)
  • colmap的使用简介

    colmap的三维重建使用简介,首先colmap的安装传送门在我另一篇中有记录。 本篇记录一下使用方法。 首先是数据集问题,可以下载自己想试着重建的数据集保存。 通过 colmap -h 和 colmap gui 打开colmap的界面。 首先点击file新建项目 “New Project” ,弹出窗口,首先建立database,命名

    2024年02月05日
    浏览(69)
  • linux下colmap的安装

    如果是仅仅为了安装colmap可以这样安装ceres Ceres的完整安装过程如下 ①安装需要的所有依赖 ②编译安装Ceres 执行 cmake .. 指令的时候出现报错,解决方案如下: 注意:第一次运行时可能会出现以下报错 此时,只需要在终端执行命令即可解决问题: 参考链接:colmap安装与实践

    2024年02月04日
    浏览(39)
  • Colmap在Linux下的安装

    在用Gaussian splatting时,要先装colmap才能做一些预处理。 以下是我这的安装过程记录,可能不一定适合其他人,但是仔细查查肯定能解决~ 我的环境:         系统:Ubuntu 22.04         cuda版本:11.8,显卡是4090 1、先安装一堆依赖库         过程没出现啥问题。如果有问题那

    2024年03月11日
    浏览(54)
  • COLMAP输出的文件类型(bin, txt)

    默认情况下,COLMAP使用 二进制文件格式(bin,机器可读,速度速) 来存储稀疏模型。此外,COLMAP也可以将稀疏模型存储为 文本文件(txt,人类可读,速度慢) 。在这两种情况下,模型导出的信息被分为关于相机、图像和点云的三个文件。任何包含这三个文件的目录都构成了一个

    2024年02月02日
    浏览(47)
  • COLMAP中将旋转矩阵转为四元数的实现

          instant-ngp中执行scripts/colmap2nerf.py时,在colmap_text目录下会生成cameras.txt、images.txt、points3D.txt三个文件:       1.cameras.txt:       (1).该文件包含数据集中所有重构相机(all reconstructed cameras)的内在参数(intrinsic parameters),每个相机占用一行;       (2).参数的长度是可变的,

    2024年02月07日
    浏览(40)
  • 安装ceres-solver以及colmap遇到的坑

    参考https://blog.csdn.net/Carry_all/article/details/103224043来进行的安装。途中遇到网络问题和make执行错误的问题。错误如下所示: 通过搜索相关问题,发现是由于自己版本不对导致的(版本过旧和过新都有问题 我使用的是最新版本)。参照https://blog.csdn.net/weixin_43731435/article/details/

    2024年02月15日
    浏览(40)
  • cmake/vcpkg x64-windows colmap安装/编译

            colmap是增量式sfm开源软件。相比于之前的sfm工作,colmap在选择最优初始图,选择最优更新图,三角化,BA,和迭代方面都有策略上的更新。本博文介绍其安装/编译方法。博主是先安装跑了下功能,再编译以阅读源码。         安装的软件是封装好的,无法看到源代码

    2024年02月08日
    浏览(60)
  • ubuntu20.04环境下安装运行Colmap+OpenMVS

      我创作这篇博客的初衷是因为我在ubuntu20.04环境下跑Colmap+OpenMVS这个算法框架的时候踩了很多坑,一方面是网上现在很多教程都是基于Windows环境下的,而Windows环境和Linux环境相比还是有很大的差异的;二是现在网上的很多教程基本很多步骤一带而过了,而往往这些一带而过

    2024年03月09日
    浏览(60)
  • colmap多相机重建多场景及数据库数据快速修改方法

    1 colmap流程 1.1 新建项目   首先打开colmap,然后创建新的project,其中数据库目录和名称自己选定,注意不要将它放到图像目录下即可。然后images选择的是图像目录(比如我这里是guangxi/section1),这个目录下应该包含有不同的文件夹,每个文件夹存放同一个相机拍摄的图像。

    2024年02月13日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包