二项分布的极大似然估计

这篇具有很好参考价值的文章主要介绍了二项分布的极大似然估计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

二项分布的极大似然估计

笔记来源:Maximum Likelihood for the Binomial Distribution, Clearly Explained!!!

P ( x ∣ n , p ) P(x|n,p) P(xn,p)
二项分布的极大似然估计
计算二项分布的极大似然估计
L ( p ∣ n , x ) L(p|n,x) L(pn,x)
二项分布的极大似然估计文章来源地址https://www.toymoban.com/news/detail-503508.html

到了这里,关于二项分布的极大似然估计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习强基计划4-2:通俗理解极大似然估计和极大后验估计+实例分析

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。 🚀详情:机器学习强基计划(附几十种经典模型源码合集) 某

    2023年04月11日
    浏览(44)
  • 最小二乘法,极大似然估计,交叉熵的公式推导

    最小二乘法、极大似然估计和交叉熵是常用的三种损失函数。 最小二乘法是一种回归问题中常用的损失函数,用于衡量预测值与实际值之间的误差平方和。它常用于线性回归问题中,目标是最小化预测值与真实值之间的均方误差(MSE)。 极大似然估计(Maximum Likelihood Estima

    2024年02月08日
    浏览(42)
  • 伯努利分布,二项分布和泊松分布以及最大似然之间的关系(未完成)

    伯努利试验说的是下面一种事件情况:在生活中,有一些事件的发生只有两种可能,发生或者不发生(或者叫成功或者失败),这些事件都可以被称为伯努利试验。 伯努利试验的概率分布 称为伯努利分布(两点分布、0-1分布),如果记成功概率为p,则失败概率为q=1-p,则:

    2023年04月23日
    浏览(33)
  • Fisher信息与最大似然估计的渐进正态性(附有在Bernoulli分布上的计算)

    写在前面 最大似然估计具有很多好的性质,包括相合性,同变性,渐进正态性等。本文主要关注的是渐进正态性。渐近正态性表明,估计量的极限分布是正态分布。而该正态分布的方差,与Fisher信息有着密不可分的关系。 Fisher信息 (定义)记分函数(Score Function): s ( X ; θ

    2024年02月09日
    浏览(60)
  • 深入理解机器学习与极大似然之间的联系

    似然函数:事件A的发生含着有许多其它事件的发生。所以我就把这些其它事件发生的联合概率来作为事件A的概率,也就是似然函数。数据类型的不同(离散型和连续性)就有不同的似然函数 极大似然极大似然估计方法(Maximum Likelihood Estimate,MLE):那就是让这个似然函数的

    2024年02月13日
    浏览(53)
  • 最大似然估计法和Zero Forcing算法的思考

    本篇文章是学习了B站UP主 乐吧的数学 之后的笔记总结,老师讲的非常好,大家有兴趣的可以关注一波! 那么 Maximum Likelihood(ML) 算法是最优的检测,这个最优指的是使错误率最低(假定发送的 x 是等概率出现的),从最低错误率的角度出发,同时假定在每个天线处的高斯白噪

    2023年04月09日
    浏览(44)
  • 【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降

    考虑二分类问题,其中每个样本由一个特征向量表示。 直观理解:将特征向量 x text{x} x 映射到一个实数 w T x text{w}^Ttext{x} w T x 一个正的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于正类的可能性较高。 一个负的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于负类的可能性

    2024年02月09日
    浏览(50)
  • 负二项分布(一种离散分布)

    负二项分布是伯努利分布的推广,它模拟了在指定(非随机)失败次数(表示为r)发生之前,一系列独立且同分布的伯努利试验中的成功次数 负二项分布可以用来确定一个系列中多于1次失败的概率 比如:计算一台机器彻底崩溃前的天数、输掉系列赛冠军需要进行多少场比赛

    2024年02月15日
    浏览(39)
  • 伯努利分布、二项分布、概念辨析

    伯努利分布 伯努利分布是二项分布的一种特殊情况,它描述的是单次随机试验中,只有两种结果的概率分布。其中,一种结果的概率为 p p p ,另外一种结果的概率为 1 − p 1-p 1 − p 。伯努利分布的概率质量函数如下: f ( k ; p ) = { p if  k = 1 , 1 − p if  k = 0. f(k;p)=begin{cases}

    2024年02月07日
    浏览(37)
  • R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列

    本文详细介绍了如何使用R语言进行随机波动模型SV的模拟和估计,包括马尔可夫蒙特卡罗法(MCMC)、正则化广义矩估计法和准最大似然估计法。

    2024年02月10日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包