协方差,协方差矩阵,相关系数

这篇具有很好参考价值的文章主要介绍了协方差,协方差矩阵,相关系数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对于一个随机变量的分布特征,可以用均值,方差,标准差来描述。对于两个随机变量,可以用协方差,和相关系数来描述两个随机变量的相互关系。

注意在机器学习中一个向量为m*n,m表示样本个数,n表示特征个数,这里的随机变量表示的是每一列,而不是每一行。

协方差

协方差,协方差矩阵,相关系数

 协方差表示了两个随机变量线性相关的程度。

样本协方差

协方差,协方差矩阵,相关系数

 为什么要除以n-1,因为这样可以样本协方差才是总体协方差的无偏估计。

协方差,协方差矩阵,相关系数

相关系数

协方差,协方差矩阵,相关系数

协方差,协方差矩阵,相关系数

import numpy as np
x1 = [-2.1, -1,  4.3]
x2 = [3,  1.1,  0.12]

X = np.stack((x1, x2), axis=0)# 每一行作为一个变量
print('相关系数',np.corrcoef(X))
print('相关系数',np.corrcoef(x1,x2))

协方差,协方差矩阵,相关系数 

协方差矩阵

协方差,协方差矩阵,相关系数

协方差,协方差矩阵,相关系数

协方差,协方差矩阵,相关系数

import numpy as np
x1 = [-2.1, -1,  4.3]  #天气这个随机变量,独立采样3次,得到三个样本值
x2 = [3,  1.1,  0.12]  #打球

X = np.stack((x1, x2), axis=0)  # 每一行作为一个变量
print('X的协方差矩阵',np.cov(X))
print('协方差矩阵',np.cov(x1, x2))
print('x1的方差',np.cov(x1))

#公式计算
def de_mean(x):
    xmean = np.mean(x)
    return [xi - xmean for xi in x]

def covariance(x, y):
    n = len(x)   #这里的n可以理解为独立采样的次数
    return np.dot(de_mean(x), de_mean(y)) / (n-1)

print('x1和x2的协方差',covariance(x1,x2))

 协方差,协方差矩阵,相关系数

参考文献:

协方差矩阵计算实例_lgcnongchaoer的博客-CSDN博客_协方差矩阵计算例题

协方差、样本协方差、协方差矩阵、相关系数详解(python代码)_虾米小馄饨的博客-CSDN博客_样本协方差

 为什么样本方差(sample variance)的分母是 n-1? - 知乎 (zhihu.com) 文章来源地址https://www.toymoban.com/news/detail-504041.html

到了这里,关于协方差,协方差矩阵,相关系数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 随机过程的均值函数、自相关函数、协方差函数

    随 机 过 程 的 均 值 是 定 义 在 某 个 时 间 点 上 的 随 机 变 量 的 函 数 随机过程的均值是定义在某个时间点上的随机变量的函数 随 机 过 程 的 均 值 是 定 义 在 某 个 时 间 点 上 的 随 机 变 量 的 函 数 协 方 差 函 数 C X ( t 1 , t 2 ) = E ( ( X t 1 − E ( X t 1 ) ) ( X t 2 − E

    2024年02月11日
    浏览(45)
  • 概率论之 多维随机变量的期望,协方差矩阵

    上一次写了一维随机变量的期望,方差,协方差。本次来记录多维随机变量的期望和协方差矩阵。这一块内容由浅入深,因此会有更新。 假设系统状态有多个分量 x 1 , x 2 , … , x n x_1,x_2,dots,x_n x 1 ​ , x 2 ​ , … , x n ​ ,则将其表示为向量的形式 X = ( x 1 , x 2 , … , x n ) T X=

    2024年02月04日
    浏览(45)
  • 阿白数模笔记之协方差矩阵与相关矩阵

    目录 前言 一、方差 二、协方差矩阵 ①协方差 ②自协方差矩阵 互协方差矩阵​编辑 ③互协方差矩阵 Ⅰ、数学定义 Ⅱ、MATLAB运算 三、相关矩阵 ①person相关系数 ②自相关矩阵 ③互相关矩阵 Ⅰ、数学定义 Ⅱ、matlab运算         作为数模小白,前天在学习FA算法时看到协方差

    2024年02月11日
    浏览(44)
  • 【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差

    序号 内容 1 【数理知识】自由度 degree of freedom 及自由度的计算方法 2 【数理知识】刚体 rigid body 及刚体的运动 3 【数理知识】刚体基本运动,平动,转动 4 【数理知识】向量数乘,内积,外积,matlab代码实现 5 【数理知识】协方差,随机变量的的协方差,随机变量分别是单

    2024年02月14日
    浏览(53)
  • 矩阵运算_矩阵的协方差矩阵/两个矩阵的协方差矩阵_求解详细步骤示例

            在统计学中, 方差 是用来度量 单个随机变量 的 离散程度 ,而协方差则一般用来刻画 两个随机变量 的 相似程度。 参考: 带你了解什么是Covariance Matrix协方差矩阵 - 知乎 将输入数据A进行中心化处理得到A\\\'。即通过 减去每个维度的平均值 来实现中心化。 注意:

    2024年02月03日
    浏览(46)
  • 【概率论理论】协方差,协方差矩阵理论(机器学习)

      在许多算法中需要求出两个分量间相互关系的信息。协方差就是描述这种相互关联程度的一个特征数。   设 ( X , Y ) (X,Y) ( X , Y ) 是一个二维随机变量,若 E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] E[(X-E(X))(Y-E(Y))] E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] 存在,则称此数学期望为 X X X 与

    2024年02月14日
    浏览(49)
  • 【应用统计学】随机变量的概率分布,数学期望和方差及协方差

     【例4-5】某厂对一批产品进行抽检,该批产品含有10件正品及3件次品。设每次抽取时,各件产品被抽到的可能性相等。一件一件抽取产品进行检验,每次抽取的产品都不放回该批产品中,求直到抽得正品为止所需次数X的分布律。 解: 由于每次抽取的产品不再放回,因此离散型

    2024年02月05日
    浏览(53)
  • 协方差矩阵在torch和numpy中的比较,自行实现torch协方差矩阵

    数学中(教科书、大学课堂、数学相关的科普视频),一个矩阵的向量往往是竖着的, 一列作为一个vector ,这一点numpy库也是这样默认的。 但是在机器学习以torch框架为例,一个有意义的向量或者说embedding 是横着的 。 因为numpy库默认是一列是一个向量而torch等机器学习框架

    2023年04月08日
    浏览(38)
  • 二维随机向量的数学期望E与协方差σ

    目录 1. 二维随机向量(X,Y)的数学期望EX, EY 2. 二维随机向量函数z=g(X,Y)的数学期望EZ 3. 二维随机向量(X,Y)的方差DX, DY 4. 二维随机向量的性质(和、积的数学期望E与方差D) 5. 二维随机向量的协方差COV和相关系数ρ 5.1 协方差COV定义 5.2 协方差COV的性质  5.3 相关系数ρ 离散形式 和

    2024年02月02日
    浏览(42)
  • 协方差矩阵

    首先先了解方差与协方差: 协方差: (1)针对 一维样本集合 时(y i =x i ),求出的协方差其实就是方差,既方差是协方差的一种特殊情况。协方差意义和方差一样,都是 反应集合中各元素离散程度 。 (2)针对 二维样本集合 时,求出的协方差反映的就是 两个维度之间的相

    2024年02月10日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包