Pytorch反向传播——optimizer.zero_grad(), loss.backward(), optimizer.step() 作用

这篇具有很好参考价值的文章主要介绍了Pytorch反向传播——optimizer.zero_grad(), loss.backward(), optimizer.step() 作用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. optimizer.zero_grad()

在 PyTorch 中,optimizer.zero_grad() 用于清空优化器中的梯度。通常,在进行一次反向传播计算之前,我们需要先清空优化器中的梯度。这是因为 PyTorch 默认会在反向传播时累加梯度,而不是覆盖之前的梯度,因此我们需要先清空梯度,再进行反向传播计算。

具体来说,optimizer.zero_grad() 会将优化器中所有可学习参数的梯度设为 0。这样,在下一次前向传递计算和反向传播计算时,之前的梯度就不会对当前的梯度产生影响。

2. loss.backward()

loss.backward() 是 PyTorch 中用于自动求导的函数,它的主要作用是计算损失函数对模型参数的梯度,从而实现反向传播算法。

在深度学习中,我们通常使用梯度下降算法来更新模型参数,使得模型能够逐步逼近最优解。在梯度下降算法中,我们需要计算损失函数关于模型参数的梯度,以便确定参数更新的方向和大小。这个计算过程就是反向传播算法,而 loss.backward() 就是反向传播算法的实现。

具体来说,loss.backward() 的作用是对损失函数进行求导,得到每个模型参数关于损失函数的梯度。这个梯度可以表示模型参数在当前状态下对损失函数的贡献大小和方向,即参数更新的方向和大小。通过梯度下降算法,我们可以根据这个梯度调整模型参数,使得损失函数逐渐减小,模型性能逐渐提升。

需要注意的是,loss.backward() 仅计算当前批次中的梯度,并不修改模型参数。如果需要更新模型参数,还需要调用优化器的 step() 方法,根据计算得到的梯度更新模型参数。

3. optimizer.step()

在 PyTorch 中,optimizer.step() 是用于更新梯度的函数。当我们使用 backward() 计算网络参数的梯度后,我们需要使用 optimizer.step() 来根据梯度更新网络参数的值。

具体来说,optimizer.step() 根据优化算法的规则,将梯度应用于网络参数。例如,常用的优化算法如 Adam、SGD 等,都有自己的更新规则,optimizer.step() 会按照相应的规则更新网络参数的值。更新后的参数将被用于下一次的前向传递计算和反向传播计算。

示例代码:

import torch
import torch.nn as nn
import torch.optim as optim

# 创建一个简单的网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 1)
        
    def forward(self, x):
        x = self.fc1(x)
        x = nn.functional.relu(x)
        x = self.fc2(x)
        return x

# 创建输入和标签
inputs = torch.randn(3, 10)
labels = torch.tensor([[1.0], [0.0], [1.0]])

# 创建网络和优化器
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 前向传递计算和反向传播计算
outputs = net(inputs)
loss = nn.functional.binary_cross_entropy_with_logits(outputs, labels)
loss.backward()

# 更新网络参数
optimizer.step()

# 输出更新后的参数值
for name, param in net.named_parameters():
    if param.requires_grad:
        print(name, param.data)

先使用 optimizer.zero_grad() 用于清空优化器中的梯度,再前向传播,计算loss,再loss.backward()计算梯度,再用optimizer.step()更新梯度。文章来源地址https://www.toymoban.com/news/detail-504058.html

到了这里,关于Pytorch反向传播——optimizer.zero_grad(), loss.backward(), optimizer.step() 作用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch(三)反向传播

    前馈过程的目的是为了计算损失loss 反向传播的目的是为了更新权重w,这里权重的更新是使用随机梯度下降来更新的。 前馈过程 反馈过程 运行结果 在神经网路中,经常对线性的结果做一个非线性函数的变幻的展开,这就是激活函数。激活函数可以使得模型具有非线性。激活

    2024年01月24日
    浏览(39)
  • pytorch 前向传播与反向传播代码+ fp16

    optim.zero_grad() : 将模型的梯度参数设置为0,即清空之前计算的梯度值,在训练模型过程中,每次模型反向传播完成后,梯度都会累加到之前的梯度值上,如果不清空,这些过时的梯度将会影响下一次迭代的结果。因此,使用 optim.zero_grad() 来清空梯度避免这种情况的发生。保证

    2024年02月05日
    浏览(45)
  • [pytorch] 8.损失函数和反向传播

    torch提供了很多损失函数,可查看官方文档Loss Functions部分 作用: 计算实际输出和目标输出之间的差距 为更新输出提供一定的依据(反向传播),grad 损失函数用法差不多,这里以L1Loss和MSEloss为例 L1Loss 注意传入的数据要为float类型,不然会报错,所以inputs和outputs处要加上类

    2024年01月25日
    浏览(37)
  • Pytorch深度学习笔记(五)反向传播算法

    目录 1.为什么要使用反向传播算法 2.二层神经网络 3.反向传播算法更新权值的过程 4.张量Tensor 推荐课程:04.反向传播_哔哩哔哩_bilibili 1.为什么要使用反向传播算法 简单模型可以使用解析式更新w 复杂模型,如图,输入矩阵为5*1矩阵,等一层权重矩阵H1为6*5矩阵,则需要30个解

    2023年04月22日
    浏览(37)
  • 《动手学深度学习 Pytorch版》 8.7 通过时间反向传播

    本节主要探讨梯度相关问题,因此对模型及其表达式进行了简化,进行如下表示: h t = f ( x t , h t − 1 , w h ) o t = g ( h t , w o ) begin{align} h_t=f(x_t,h_{t-1},w_h)\\\\ o_t=g(h_t,w_o) end{align} h t ​ o t ​ ​ = f ( x t ​ , h t − 1 ​ , w h ​ ) = g ( h t ​ , w o ​ ) ​ ​ 参数字典: t t t 表示时间步

    2024年02月07日
    浏览(43)
  • loss.backward

    如何计算:autograd包根据tensor进行过的数学运算来自动计算梯度 注意:1:autograd实现的。2:对tensor进行计算梯度。 之前损失计算:分割损失和边界损失计算正常。 踩坑1:模型有两个损失,分别为分割损失和边界损失,在loss function计算损失值。然后将损失值相加进行反向传

    2024年02月11日
    浏览(36)
  • 【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture04反向传播

    lecture04反向传播 课程网址 Pytorch深度学习实践 部分课件内容: pytorch的机制是动态计算图, tensor里面既有data也有gradient

    2024年02月22日
    浏览(45)
  • 神经网络中的前向传播(Forward Propagation)和后向传播(Backward Propagation)

    有时候会搞混这两个概念。什么是前向传播?不是只有后向传播吗?后向传播好像是用来更新模型参数的,前向传播是什么东西? 带着疑问再次梳理一遍: 前向传播是神经网络进行预测的过程。在这个过程中,输入数据沿着神经网络从输入层经过隐藏层(如果有的话)最终

    2024年02月20日
    浏览(49)
  • loss.backward()处遇到“RuntimeError: Found dtype Double but expected Float”

    类型错误, 计算loss值的函数传入的参数类型不统一。 查看上文loss计算代码部分的参数类型,如loss=f.mse_loss(out,label),检查out和label的类型都是torch.float类型即可。使用label.dtype查看tensor的类型。 报错定位在这一行 寻思着是否是loss类型的问题,于是我就添加 但是还是报错在此

    2024年02月16日
    浏览(46)
  • 损失函数loss和优化器optimizer

    损失函数与优化器的关联_criterion(outputs, labels)_写代码_不错哦的博客-CSDN博客 https://blog.csdn.net/shenjianhua005/article/details/123971915?ops_request_misc=request_id=6583569ecbdc4daf89dbf2d43eac9242biz_id=utm_medium=distribute.pc_search_result.none-task-blog-2~all~koosearch~default-2-123971915-null-null.142^v93^koosearch_v1utm_term=

    2024年02月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包