ChatGLM-6B第二代模型开源,拿下LLM模型中文能力评估榜单第一名

这篇具有很好参考价值的文章主要介绍了ChatGLM-6B第二代模型开源,拿下LLM模型中文能力评估榜单第一名。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ChatGLM-6B 自3月14日发布以来,深受广大开发者喜爱。截至 6 月24日,来自 Huggingface 上的下载量已经超过 300w。

为了更进一步促进大模型开源社区的发展,我们再次升级 ChatGLM-6B,发布 ChatGLM2-6B 。在主要评估LLM模型中文能力的 C-Eval 榜单中,截至6月25日 ChatGLM2 模型以 71.1 的分数位居 Rank 0 ,ChatGLM2-6B 模型以 51.7 的分数位居 Rank 6,是榜单上排名最高的开源模型。

ChatGLM-6B第二代模型开源,拿下LLM模型中文能力评估榜单第一名

  • CEval榜单,ChatGLM2暂时位居Rank 0,ChatGLM2-6B位居 Rank 6

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。

更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。

更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。如果您发现我们的开源模型对您的业务有用,我们欢迎您对下一代模型 ChatGLM3 研发的捐赠。

在关注ChatGLM第二代模型的同时,我们也看到了团队的另一个大模型作品CodeGeeX。CodeGeeX 是一个具有130亿参数的大规模多编程语言代码预训练模型,该预训练模型支持二十多种主流编程语言,实现高精度的代码生成,代码翻译和代码注释等功能。模型开源开放,目前在Github上已经获得6000+ Star好评。

ChatGLM-6B第二代模型开源,拿下LLM模型中文能力评估榜单第一名

基于CodeGeeX模型的插件产品,支持多种主流IDE,如VS Code、IntelliJ IDEA、PyCharm、Vim等,目前CodeGeeX插件的安装用户超过100,000+,每天为开发者生成数百万行代码。

下载使用——CodeGeeX插件,在VSCode和JetBrains IDEs可以直接免费下载使用。CodeGeeX插件可以自动实现代码生成,可以逐行为代码添加注释,也可以进行不同编程语言之间的代码翻译。特别值得点赞的功能“Ask CodeGeeX”,把类似chatGPT一样的智能问答功能,与开发者编程环境IDE深度融合。开发者可以在IDE中,通过问答对话的方式解决技术问题。

在IDE中使用Ask CodeGeeX功能,使得开发过程中遇到的问题,都可以在IDE中沉浸式解决,不用跳出开发环境寻找解决代码问题的答案,提升了代码开发效率。同时,在这个新版本中,通过对话框区域常用命令“explain/解释代码”、“comment/生成注释”、“fixbug/检查bug”的快捷方式,可以直接操作代码,实现代码解释,逐行添加代码注释,尝试修复代码片段潜在bug等功能。

“explain/解释代码”按钮,获得整段代码解释

当你编写代码时,希望了解某一段生成的代码作何解释?那么你就可以在CodeGeeX插件的代码生成区域中,选中该段代码,左侧边栏的对话区会出现浮层,同时展示选中代码。在对话区通过快捷按钮:“解释代码”,在对话界面中就可以回复出整段的代码解释。

“comment/生成注释”按钮为代码逐行添加注释

同样,当你希望为一段生成的代码逐行添加注释,你就可以在CodeGeeX代码生成区域,选中该段代码,侧边栏的对话区会出现浮层,同时展示选中代码。在对话区通过快捷按钮:“生成注释”,在对话界面就可以直接为这段代码逐行添加注释。

“fixbug/检查bug”修复代码潜在bug

当你编写代码遇到一个错误时,在CodeGeeX插件的代码生成区域中选中该段代码,左侧边栏的对话区会出现浮层,同时展示选中代码。在对话区通过快捷按钮:“检查bug”,代码编辑区就可以直接帮你找到这段代码中的问题并进行错误修复,并且对修复代码的区域做高亮标记,方便进行代码对照。

本文由博客一文多发平台 OpenWrite 发布!文章来源地址https://www.toymoban.com/news/detail-504116.html

到了这里,关于ChatGLM-6B第二代模型开源,拿下LLM模型中文能力评估榜单第一名的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【LLM】chatglm-6B模型训练和推理

    本篇文章记录下 chatglm-6B 训练和推理过程 环境:Ubuntu 20.04 + 1.13.0+cu116 chatglm-6B 源代码仓库:链接 chatglm-6B 模型权重:链接 这里使用的是 THUDM 在 hugging face 开源的模型。 因为模型比较大,仓库保存模式使用的是 git lfs 模式,再 clone 之后再使用 git lfs pull 去 download 大文件。 c

    2024年02月10日
    浏览(50)
  • Python:清华ChatGLM-6B中文对话模型部署

    1、简介 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话

    2024年02月08日
    浏览(47)
  • 免费部署开源大模型 ChatGLM-6B

    参考:【大模型-第一篇】在阿里云上部署ChatGLM3-CSDN博客 ChatGLM 是一个开源的、支持中英双语的对话语言模型,由智谱 AI 和清华大学 KEG 实验室联合发布,基于 General Language Model (GLM) 架构,具有 62 亿参数。ChatGLM3-6B 更是在保留了前两代模型对话流畅、部署门槛低等众多优秀特

    2024年01月18日
    浏览(76)
  • 解锁大语言模型LLM对话潜力:ChatGLM3-6B的多轮对话实践与深入探索

    随着人工智能技术的飞速发展,多轮对话系统已成为自然语言处理领域的研究热点。多轮对话要求模型不仅能理解用户的当前输入,还需结合对话历史进行连贯回复,这对模型的上下文理解和生成能力提出了更高要求。ChatGLM3-6B作为一种先进的大型语言模型,在多轮对话任务

    2024年02月22日
    浏览(56)
  • LLM大语言模型(三):使用ChatGLM3-6B的函数调用功能前先学会Python的装饰器

    目录 ChatGLM3-6B的函数调用模式示例 本地启动ChatGLM3-6B工具模式 如何在ChatGLM3-6B里新增一个自定义函数呢? get_weather基于Python的装饰器实现 函数注解@register_tool 现在我们来自定义一个kuakuawo()函数 ChatGLM3-6B目前有三种使用模式: 对话模式 工具模式(也就是本文要介绍的函数调用

    2024年01月25日
    浏览(72)
  • 【ChatGLM】基于 ChatGLM-6B + langchain 实现本地化知识库检索与智能答案生成: 中文 LangChain 项目的实现开源工作

      目录 【ChatGLM】基于 ChatGLM-6B + langchain 实现本地化知识库检索与智能答案生成: 中文 LangChain 项目的实现开源工作 1.克隆源代码:

    2024年02月11日
    浏览(43)
  • 开源模型应用落地-chatglm3-6b模型小试-入门篇(一)

         刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。      在信息时代,我们可以轻松地通过互联网获取大量的理论知识和概念。然

    2024年04月10日
    浏览(54)
  • 开源模型应用落地-chatglm3-6b模型小试-入门篇(三)

         刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。      在信息时代,我们可以轻松地通过互联网获取大量的理论知识和概念。然

    2024年04月12日
    浏览(46)
  • 开源双语对话语言模型 ChatGLM-6B 本地私有化部署

    本文首发于:https://www.licorne.ink/2023/08/llm-chatglm-6b-local-deploy/ ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGL

    2024年02月10日
    浏览(65)
  • 三个开源大模型(chatglm2-6B, moss, llama)-chatglm2的测试

    chatglm2-6B 是清华大学开源的一款支持中英双语的对话语言模型。经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,具有62 亿参数的 ChatGLM2-6B 已经能生成相当符合人类偏好的回答。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6G

    2024年02月11日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包