用曲线积分(格林公式)求双纽线(r^2=a^2*cos2Θ)的面积

这篇具有很好参考价值的文章主要介绍了用曲线积分(格林公式)求双纽线(r^2=a^2*cos2Θ)的面积。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于对双扭线图形的分析:

计算时将其分为四个面积相等的部分(见图中深色部分),在该部分Θ的取值变化为从0-Π/4。

计算过程如下:(计算的式子有点长,但求积分时会消掉一部分)

用曲线积分(格林公式)求双纽线(r^2=a^2*cos2Θ)的面积

 文章来源地址https://www.toymoban.com/news/detail-504688.html

到了这里,关于用曲线积分(格林公式)求双纽线(r^2=a^2*cos2Θ)的面积的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【应试技巧】格林公式记忆方法及简单推导

    视频讲解:格林公式记忆方法及简单推导 大家在学格林公式的时候会发现其实书本上给的形式并不容易记忆。 大家可能会产生下述的问题 忘记了逆时针和顺时针哪个是正方向? 忘记了P,Q该对谁求偏导? 忘记了求偏导以后是谁减谁? 本文分为两个部分,第一部分是将格林

    2024年02月05日
    浏览(38)
  • sin x和cos x的若干次方的定积分

    sin x和cos x的若干次方的定积分 ∫ 0 π 2 sin ⁡ n x = ∫ 0 π 2 cos ⁡ n x = { n − 1 n × n − 3 n − 2 × ⋯ × 1 2 × π 2 n 为偶数 n − 1 n × n − 3 n − 2 × ⋯ × 1 2 × 1 n 为奇数 int_0^{frac{pi}{2}}sin^nx=int_0^{frac{pi}{2}}cos^nx= begin{cases} dfrac{n-1}{n}times dfrac{n-3}{n-2}times cdotstimes dfrac 12ti

    2024年02月08日
    浏览(30)
  • 基于MATLAB的三重积分与曲线积分

    目录 一. 三重定积分的数值求解 例题1 例题2 例题3 二. 第一类曲线积分:对弧长的曲线积分 例题4 例题5 三. 第二类积分:对坐标的曲线积分 例题6 例题7 三重定积分的数学表达形式为: 在MATLAB中调用的格式为如下: 在调用时,最后一个@ quadl 为具体求解一元积分的数值函数,

    2023年04月21日
    浏览(80)
  • 不定积分/定积分——三角函数n次方不定积分公式(包含sec^nx与csc^nx不定积分公式)

    ∫ ( tan ⁡ n x ) d x = 1 n − 1 [ ( tan ⁡ x ) n − 1 ] − ∫ [ ( tan ⁡ x ) n − 2 ] d x ∫(tan ^nx)dx =frac{1}{n-1}left[left(tan xright)^{n-1}right]-∫left[(tan x)^{n-2}right]dx ∫ ( tan n x ) d x = n − 1 1 ​ [ ( tan x ) n − 1 ] − ∫ [ ( tan x ) n − 2 ] d x 记: I n = ∫ sec ⁡ n x d x I_n=intsec ^nx{mathrm{d}x} I n

    2024年02月04日
    浏览(50)
  • 0到π/0到2π,sinⁿx、cosⁿx的定积分

             

    2024年02月11日
    浏览(30)
  • 宋浩高等数学笔记(十一)曲线积分与曲面积分

            个人认为同济高数乃至数学一中最烧脑的一章。。。重点在于计算方式的掌握,如果理解不了可以暂时不强求,背熟积分公式即可。此外本贴暂时忽略两类曲面积分之间的联系,以及高斯公式的相关内容,日后会尽快更新,争取高效率学习。         在数学中

    2024年02月13日
    浏览(42)
  • 【高等数学笔记】两类曲线积分、曲面积分的转化

    整体思想:局部均匀化,用很小的长度/面积元上一点某个量的数值来代替整个元的数值。 设曲线 Γ Gamma Γ 的参数方程为 x = x ( t ) , y = y ( t ) , z = z ( t ) x=x(t),y=y(t),z=z(t) x = x ( t ) , y = y ( t ) , z = z ( t ) 。令 r = ( x , y , z ) bm r=(x,y,z) r = ( x , y , z ) ,则方程为 r = r ( t ) bm r=bm r(t

    2024年02月04日
    浏览(40)
  • 高等数学啃书汇总重难点(十一)曲线积分与曲面积分

    依旧是公式极其复杂恶心的一章,建议是: 掌握两种线面积分的计算套路即可 ,和第8章一样属于同济版教材中最不重要的章节,不会对底层理解做过多考察~ 1.弧长曲线积分的几何意义 2.弧长曲线积分的定义和性质 3.弧长曲线积分的计算方式 4.坐标曲线积分的几何意义 5.坐标

    2024年02月06日
    浏览(37)
  • 【matlab】数值积分公式的程序实现

    ( 一 )专题实验(Newton-Cotes积分公式) 1、编写[a,b]上梯形积分公式、Simpson积分公式。 2、利用自己编写的程序计算定积分,计算一下数值解和精确解之间差的绝对值。 梯形积分: function  T=TX_int(f,a,b) T=(b-a)/2*(f(a)+f(b)); TX_int(@(x)cos(x),0,pi/4) ans = 0.6704 function  T=TX_int(f,a,b) T=(b-

    2024年02月05日
    浏览(40)
  • 定积分的计算(牛顿-莱布尼茨公式)习题

    前置知识:定积分的计算(牛顿-莱布尼茨公式) 习题1 计算 ∫ 0 2 ( x 2 − 2 x + 3 ) d x int_0^2(x^2-2x+3)dx ∫ 0 2 ​ ( x 2 − 2 x + 3 ) d x 解: qquad 原式 = ( 1 3 x 3 − x 2 + 3 x ) ∣ 0 2 = ( 8 3 − 4 + 6 ) − 0 = 14 3 =(dfrac 13x^3-x^2+3x)biggvert_0^2=(dfrac 83-4+6)-0=dfrac{14}{3} = ( 3 1 ​ x 3 − x 2 + 3 x ) ​

    2024年02月06日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包