Flink CDC整库同步(多表异构同步)

这篇具有很好参考价值的文章主要介绍了Flink CDC整库同步(多表异构同步)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

flinkcdc单表同步比较简单,按照官方案例基本都能成功,多表异构同步、整库同步这块一直想尝试一下,社区说使用API可以做到,但是一直没能白嫖到可行方案(代码),然后自己动手尝试了下,咳咳,无奈技术太菜,java各种语法都搞的不是太明白,时间跨度蛮久,中间遇到了不少问题,中途偶然间在群里看到了很久很久以前群友发的一份同步方案,可惜缺少了反序列化的过程,借鉴过来改巴改巴(也改了好几个星期,太菜了),勉强是能跑了,分享出来,能帮到大家一点也就很好了。

方案思路

这个方案的整体思路我先说一下(大佬的思路,我借鉴的),首先我们先使用mysqlcatalog获取到各个表的信息(列名、列类型之类的),然后创建相应的sink table,然后flinkcdc的DataStream是提供了整库获取数据的能力的,所以我们就采用DataStream的方式拿到数据,然后在自定义反序列化里形成<tableName,Row>的输出,得到DataStream<<tableName,Row>,然后根据tableName将这个流拆分(过滤),就相当于一个tablename对应一个自己的DataStream,然后将每个流转为一个sourcetable,然后insert into sinktable select * from sourcetable,然后…gameover。

走起:

flink版本:1.15.2(1.15以下版本貌似还没有mysqlcatalog,如果要使用低版本,代码需要调整一下)
flink cdc版本:2.3.0
注意:需先在sink库创建好相应的表(之前忘记写了)

不巴拉了,直接上代码,场景是mysql -> mysql,sink端如果是其他数据库理论上应该是一样,source表需要有主键,这是flinkcdc底层约定好的,没有会报错。

package com.cityos;

import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import org.apache.commons.lang3.StringUtils;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.calcite.shaded.com.google.common.collect.Maps;
import org.apache.flink.connector.jdbc.catalog.MySqlCatalog;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.StatementSet;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.DefaultCatalogTable;
import org.apache.flink.table.catalog.ObjectPath;
import org.apache.flink.table.runtime.typeutils.InternalTypeInfo;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.LogicalType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.types.Row;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

/**
 * flink cdc 整库同步
 */
public class FlinkCdcMultiSyncJdbc {

    private static final Logger log = LoggerFactory.getLogger(FlinkCdcMultiSyncJdbc.class);

    public static void main(String[] args) throws Exception {

       // source端连接信息
        String userName = "root";
        String passWord = "18772247265Ldy@";
        String host = "localhost";
        String db = "flinktest1";
       // 如果是整库,tableList = ".*"
        String tableList = "lidy.nlp_category,lidy.nlp_classify_man_made3";
        int port = 33306;

       // sink连接信息模板
        String sink_url = "jdbc:mysql://localhost:33306/flinktest?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai";
        String sink_username = "root";
        String sink_password = "18772247265Ldy@";

        String connectorWithBody =
                " with (\n" +
                        " 'connector' = 'jdbc',\n" +
                        " 'url' = '${sink_url}',\n" +
                        " 'username' = '${sink_username}',\n" +
                        " 'password' = '${sink_password}',\n" +
                        " 'table-name' = '${tableName}'\n" +
                        ")";
        connectorWithBody = connectorWithBody.replace("${sink_url}", sink_url)
                .replace("${sink_username}", sink_username)
                .replace("${sink_password}", sink_password);
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(3000);
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);

        // 注册同步的库对应的catalog
        MySqlCatalog mysqlCatalog = new MySqlCatalog("mysql-catalog", db, userName, passWord, String.format("jdbc:mysql://%s:%d", host, port));
        List<String> tables = new ArrayList<>();

       // 如果整库同步,则从catalog里取所有表,否则从指定表中取表名
        if (".*".equals(tableList)) {
            tables = mysqlCatalog.listTables(db);
        } else {
            String[] tableArray = tableList.split(",");
            for (String table : tableArray) {
                tables.add(table.split("\\.")[1]);
            }
        }
       // 创建表名和对应RowTypeInfo映射的Map
        Map<String, RowTypeInfo> tableTypeInformationMap = Maps.newConcurrentMap();
        Map<String, DataType[]> tableDataTypesMap = Maps.newConcurrentMap();
        Map<String, RowType> tableRowTypeMap = Maps.newConcurrentMap();
        for (String table : tables) {
            // 获取mysql catalog中注册的表
            ObjectPath objectPath = new ObjectPath(db, table);
            DefaultCatalogTable catalogBaseTable = (DefaultCatalogTable) mysqlCatalog.getTable(objectPath);
            // 获取表的Schema
            Schema schema = catalogBaseTable.getUnresolvedSchema();
            // 获取表中字段名列表
            String[] fieldNames = new String[schema.getColumns().size()];
            // 获取DataType
            DataType[] fieldDataTypes = new DataType[schema.getColumns().size()];
            LogicalType[] logicalTypes = new LogicalType[schema.getColumns().size()];
            // 获取表字段类型
            TypeInformation<?>[] fieldTypes = new TypeInformation[schema.getColumns().size()];
            // 获取表的主键
            List<String> primaryKeys = schema.getPrimaryKey().get().getColumnNames();

            for (int i = 0; i < schema.getColumns().size(); i++) {
                Schema.UnresolvedPhysicalColumn column = (Schema.UnresolvedPhysicalColumn) schema.getColumns().get(i);
                fieldNames[i] = column.getName();
                fieldDataTypes[i] = (DataType) column.getDataType();
                fieldTypes[i] = InternalTypeInfo.of(((DataType) column.getDataType()).getLogicalType());
                logicalTypes[i] = ((DataType) column.getDataType()).getLogicalType();
            }
            RowType rowType = RowType.of(logicalTypes, fieldNames);
            tableRowTypeMap.put(table, rowType);

            // 组装sink表ddl sql
            StringBuilder stmt = new StringBuilder();
            String tableName = table;
            String jdbcSinkTableName = String.format("jdbc_sink_%s", tableName);
            stmt.append("create table ").append(jdbcSinkTableName).append("(\n");

            for (int i = 0; i < fieldNames.length; i++) {
                String column = fieldNames[i];
                String fieldDataType = fieldDataTypes[i].toString();
                stmt.append("\t").append(column).append(" ").append(fieldDataType).append(",\n");
            }
            stmt.append(String.format("PRIMARY KEY (%s) NOT ENFORCED\n)", StringUtils.join(primaryKeys, ",")));
            String formatJdbcSinkWithBody = connectorWithBody
                    .replace("${tableName}", jdbcSinkTableName);
            String createSinkTableDdl = stmt.toString() + formatJdbcSinkWithBody;
            // 创建sink表
            log.info("createSinkTableDdl: {}", createSinkTableDdl);
            tEnv.executeSql(createSinkTableDdl);
            tableDataTypesMap.put(tableName, fieldDataTypes);
            tableTypeInformationMap.put(tableName, new RowTypeInfo(fieldTypes, fieldNames));
        }

       // 监控mysql binlog
        MySqlSource mySqlSource = MySqlSource.<Tuple2<String, Row>>builder()
                .hostname(host)
                .port(port)
                .databaseList(db)
                .tableList(tableList)
                .username(userName)
                .password(passWord)
                .deserializer(new CustomDebeziumDeserializer(tableRowTypeMap))
                .startupOptions(StartupOptions.initial())
                .build();
        SingleOutputStreamOperator<Tuple2<String, Row>> dataStreamSource = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "mysql cdc").disableChaining();
        StatementSet statementSet = tEnv.createStatementSet();
        // dataStream转Table,创建临时视图,插入sink表
        for (Map.Entry<String, RowTypeInfo> entry : tableTypeInformationMap.entrySet()) {
            String tableName = entry.getKey();
            RowTypeInfo rowTypeInfo = entry.getValue();
            SingleOutputStreamOperator<Row> mapStream = dataStreamSource.filter(data -> data.f0.equals(tableName)).map(data -> data.f1, rowTypeInfo);
            Table table = tEnv.fromChangelogStream(mapStream);
            String temporaryViewName = String.format("t_%s", tableName);
            tEnv.createTemporaryView(temporaryViewName, table);
            String sinkTableName = String.format("jdbc_sink_%s", tableName);
            String insertSql = String.format("insert into %s select * from %s", sinkTableName, temporaryViewName);
            log.info("add insertSql for {},sql: {}", tableName, insertSql);
            statementSet.addInsertSql(insertSql);
        }
        statementSet.execute();
    }
}

对应的反序列化代码

package com.cityos;


import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import com.ververica.cdc.debezium.table.DeserializationRuntimeConverter;
import com.ververica.cdc.debezium.utils.TemporalConversions;
import io.debezium.data.Envelope;
import io.debezium.data.SpecialValueDecimal;
import io.debezium.data.VariableScaleDecimal;
import io.debezium.time.*;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.calcite.shaded.com.google.common.collect.Maps;
import org.apache.flink.table.data.DecimalData;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.data.StringData;
import org.apache.flink.table.data.TimestampData;
import org.apache.flink.table.types.logical.DecimalType;
import org.apache.flink.table.types.logical.LogicalType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.types.Row;
import org.apache.flink.types.RowKind;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Decimal;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;

import java.math.BigDecimal;
import java.nio.ByteBuffer;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.util.Map;


public class CustomDebeziumDeserializer implements DebeziumDeserializationSchema {


    /**
     * Runtime converter that converts Kafka {@link SourceRecord}s into {@link RowData} consisted of
     * physical column values.
     */

    private final Map<String, RowType> tableRowTypeMap;
    private Map<String, DeserializationRuntimeConverter> physicalConverterMap = Maps.newConcurrentMap();

    CustomDebeziumDeserializer(Map tableRowTypeMap) {
        this.tableRowTypeMap = tableRowTypeMap;
        for (String tablename : this.tableRowTypeMap.keySet()) {
            RowType rowType = this.tableRowTypeMap.get(tablename);
            DeserializationRuntimeConverter physicalConverter =createNotNullConverter(rowType);
            this.physicalConverterMap.put(tablename,physicalConverter);
        }
    }

    @Override
    public void deserialize(SourceRecord record, Collector out) throws Exception {
        Envelope.Operation op = Envelope.operationFor(record);
        Struct value = (Struct) record.value();
        Schema valueSchema = record.valueSchema();
        Struct source = value.getStruct("source");
        String tablename = source.get("table").toString();
        DeserializationRuntimeConverter physicalConverter = physicalConverterMap.get(tablename);
        if (op == Envelope.Operation.CREATE || op == Envelope.Operation.READ) {
            Row insert = extractAfterRow(value, valueSchema, physicalConverter);
            insert.setKind(RowKind.INSERT);
            out.collect(Tuple2.of(tablename,insert));
        } else if (op == Envelope.Operation.DELETE) {
            Row delete = extractBeforeRow(value, valueSchema, physicalConverter);
            delete.setKind(RowKind.DELETE);
            out.collect(Tuple2.of(tablename,delete));
        } else {
            Row before = extractBeforeRow(value, valueSchema, physicalConverter);
            before.setKind(RowKind.UPDATE_BEFORE);
            out.collect(Tuple2.of(tablename,before));

            Row after = extractAfterRow(value, valueSchema, physicalConverter);
            after.setKind(RowKind.UPDATE_AFTER);
            out.collect(Tuple2.of(tablename,after));
        }
    }

    private Row extractAfterRow(Struct value, Schema valueSchema, DeserializationRuntimeConverter physicalConverter) throws Exception {
        Schema afterSchema = valueSchema.field(Envelope.FieldName.AFTER).schema();
        Struct after = value.getStruct(Envelope.FieldName.AFTER);
        return (Row) physicalConverter.convert(after, afterSchema);
    }

    private Row extractBeforeRow(Struct value, Schema valueSchema, DeserializationRuntimeConverter physicalConverter) throws Exception {
        Schema beforeSchema = valueSchema.field(Envelope.FieldName.BEFORE).schema();
        Struct before = value.getStruct(Envelope.FieldName.BEFORE);
        return (Row) physicalConverter.convert(before, beforeSchema);
    }


    @Override
    public TypeInformation<Tuple2<String, Row>> getProducedType() {
        return TypeInformation.of(new TypeHint<Tuple2<String, Row>>() {
        });
    }

    public static DeserializationRuntimeConverter createNotNullConverter(LogicalType type) {


        switch (type.getTypeRoot()) {
            case NULL:
                return new DeserializationRuntimeConverter() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Object convert(Object dbzObj, Schema schema) {
                        return null;
                    }
                };
            case BOOLEAN:
                return convertToBoolean();
            case TINYINT:
                return new DeserializationRuntimeConverter() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Object convert(Object dbzObj, Schema schema) {
                        return Byte.parseByte(dbzObj.toString());
                    }
                };
            case SMALLINT:
                return new DeserializationRuntimeConverter() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Object convert(Object dbzObj, Schema schema) {
                        return Short.parseShort(dbzObj.toString());
                    }
                };
            case INTEGER:
            case INTERVAL_YEAR_MONTH:
                return convertToInt();
            case BIGINT:
            case INTERVAL_DAY_TIME:
                return convertToLong();
            case DATE:
                return convertToDate();
            case TIME_WITHOUT_TIME_ZONE:
                return convertToTime();
            case TIMESTAMP_WITHOUT_TIME_ZONE:
                return convertToTimestamp(ZoneId.of("UTC"));
            case TIMESTAMP_WITH_LOCAL_TIME_ZONE:
                return convertToLocalTimeZoneTimestamp(ZoneId.of("UTC"));
            case FLOAT:
                return convertToFloat();
            case DOUBLE:
                return convertToDouble();
            case CHAR:
            case VARCHAR:
                return convertToString();
            case BINARY:
            case VARBINARY:
                return convertToBinary();
            case DECIMAL:
                return createDecimalConverter((DecimalType) type);
            case ROW:
                return createRowConverter(
                        (RowType) type);
            case ARRAY:
            case MAP:
            case MULTISET:
            case RAW:
            default:
                throw new UnsupportedOperationException("Unsupported type: " + type);
        }
    }

    private static DeserializationRuntimeConverter convertToBoolean() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Boolean) {
                    return dbzObj;
                } else if (dbzObj instanceof Byte) {
                    return (byte) dbzObj == 1;
                } else if (dbzObj instanceof Short) {
                    return (short) dbzObj == 1;
                } else {
                    return Boolean.parseBoolean(dbzObj.toString());
                }
            }
        };
    }

    private static DeserializationRuntimeConverter convertToInt() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Integer) {
                    return dbzObj;
                } else if (dbzObj instanceof Long) {
                    return ((Long) dbzObj).intValue();
                } else {
                    return Integer.parseInt(dbzObj.toString());
                }
            }
        };
    }

    private static DeserializationRuntimeConverter convertToLong() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Integer) {
                    return ((Integer) dbzObj).longValue();
                } else if (dbzObj instanceof Long) {
                    return dbzObj;
                } else {
                    return Long.parseLong(dbzObj.toString());
                }
            }
        };
    }

    private static DeserializationRuntimeConverter createDecimalConverter(DecimalType decimalType) {
        final int precision = decimalType.getPrecision();
        final int scale = decimalType.getScale();
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                BigDecimal bigDecimal;
                if (dbzObj instanceof byte[]) {
                    // decimal.handling.mode=precise
                    bigDecimal = Decimal.toLogical(schema, (byte[]) dbzObj);
                } else if (dbzObj instanceof String) {
                    // decimal.handling.mode=string
                    bigDecimal = new BigDecimal((String) dbzObj);
                } else if (dbzObj instanceof Double) {
                    // decimal.handling.mode=double
                    bigDecimal = BigDecimal.valueOf((Double) dbzObj);
                } else {
                    if (VariableScaleDecimal.LOGICAL_NAME.equals(schema.name())) {
                        SpecialValueDecimal decimal =
                                VariableScaleDecimal.toLogical((Struct) dbzObj);
                        bigDecimal = decimal.getDecimalValue().orElse(BigDecimal.ZERO);
                    } else {
                        // fallback to string
                        bigDecimal = new BigDecimal(dbzObj.toString());
                    }
                }
                return DecimalData.fromBigDecimal(bigDecimal, precision, scale);
            }
        };
    }

    private static DeserializationRuntimeConverter convertToDouble() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Float) {
                    return ((Float) dbzObj).doubleValue();
                } else if (dbzObj instanceof Double) {
                    return dbzObj;
                } else {
                    return Double.parseDouble(dbzObj.toString());
                }
            }
        };
    }

    private static DeserializationRuntimeConverter convertToFloat() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Float) {
                    return dbzObj;
                } else if (dbzObj instanceof Double) {
                    return ((Double) dbzObj).floatValue();
                } else {
                    return Float.parseFloat(dbzObj.toString());
                }
            }
        };
    }

    private static DeserializationRuntimeConverter convertToDate() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                return (int) TemporalConversions.toLocalDate(dbzObj).toEpochDay();
            }
        };
    }

    private static DeserializationRuntimeConverter convertToTime() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Long) {
                    switch (schema.name()) {
                        case MicroTime.SCHEMA_NAME:
                            return (int) ((long) dbzObj / 1000);
                        case NanoTime.SCHEMA_NAME:
                            return (int) ((long) dbzObj / 1000_000);
                    }
                } else if (dbzObj instanceof Integer) {
                    return dbzObj;
                }
                // get number of milliseconds of the day
                return TemporalConversions.toLocalTime(dbzObj).toSecondOfDay() * 1000;
            }
        };
    }

    private static DeserializationRuntimeConverter convertToTimestamp(ZoneId serverTimeZone) {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof Long) {
                    switch (schema.name()) {
                        case Timestamp.SCHEMA_NAME:
                            return TimestampData.fromEpochMillis((Long) dbzObj);
                        case MicroTimestamp.SCHEMA_NAME:
                            long micro = (long) dbzObj;
                            return TimestampData.fromEpochMillis(
                                    micro / 1000, (int) (micro % 1000 * 1000));
                        case NanoTimestamp.SCHEMA_NAME:
                            long nano = (long) dbzObj;
                            return TimestampData.fromEpochMillis(
                                    nano / 1000_000, (int) (nano % 1000_000));
                    }
                }
                LocalDateTime localDateTime =
                        TemporalConversions.toLocalDateTime(dbzObj, serverTimeZone);
                return TimestampData.fromLocalDateTime(localDateTime);
            }
        };
    }

    private static DeserializationRuntimeConverter convertToLocalTimeZoneTimestamp(
            ZoneId serverTimeZone) {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof String) {
                    String str = (String) dbzObj;
                    // TIMESTAMP_LTZ type is encoded in string type
                    Instant instant = Instant.parse(str);
                    return TimestampData.fromLocalDateTime(
                            LocalDateTime.ofInstant(instant, serverTimeZone));
                }
                throw new IllegalArgumentException(
                        "Unable to convert to TimestampData from unexpected value '"
                                + dbzObj
                                + "' of type "
                                + dbzObj.getClass().getName());
            }
        };
    }

    private static DeserializationRuntimeConverter convertToString() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                return StringData.fromString(dbzObj.toString());
            }
        };
    }

    private static DeserializationRuntimeConverter convertToBinary() {
        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) {
                if (dbzObj instanceof byte[]) {
                    return dbzObj;
                } else if (dbzObj instanceof ByteBuffer) {
                    ByteBuffer byteBuffer = (ByteBuffer) dbzObj;
                    byte[] bytes = new byte[byteBuffer.remaining()];
                    byteBuffer.get(bytes);
                    return bytes;
                } else {
                    throw new UnsupportedOperationException(
                            "Unsupported BYTES value type: " + dbzObj.getClass().getSimpleName());
                }
            }
        };
    }

    private static DeserializationRuntimeConverter createRowConverter(RowType rowType) {
        final DeserializationRuntimeConverter[] fieldConverters =
                rowType.getFields().stream()
                        .map(RowType.RowField::getType)
                        .map(
                                logicType ->
                                        createNotNullConverter( logicType))
                        .toArray(DeserializationRuntimeConverter[]::new);
        final String[] fieldNames = rowType.getFieldNames().toArray(new String[0]);

        return new DeserializationRuntimeConverter() {

            private static final long serialVersionUID = 1L;

            @Override
            public Object convert(Object dbzObj, Schema schema) throws Exception {
                Struct struct = (Struct) dbzObj;
                int arity = fieldNames.length;
                Row row = new Row(arity);
                for (int i = 0; i < arity; i++) {
                    String fieldName = fieldNames[i];
                    Field field = schema.field(fieldName);
                    if (field == null) {
                        row.setField(i, null);
                    } else {
                        Object fieldValue = struct.getWithoutDefault(fieldName);
                        Schema fieldSchema = schema.field(fieldName).schema();
                        Object convertedField =
                                convertField(fieldConverters[i], fieldValue, fieldSchema);
                        row.setField(i, convertedField);
                    }
                }
                return row;
            }
        };
    }

    private static Object convertField(
            DeserializationRuntimeConverter fieldConverter, Object fieldValue, Schema fieldSchema)
            throws Exception {
        if (fieldValue == null) {
            return null;
        } else {
            return fieldConverter.convert(fieldValue, fieldSchema);
        }
    }
}

再贴上我的pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.cityos</groupId>
    <artifactId>flink_1_15</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <java.version>1.8</java.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <spring-boot.version>2.3.7.RELEASE</spring-boot.version>
        <flink.version>1.15.2</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
        <!--        <scala.version>2.12.12</scala.version>-->
    </properties>

    <repositories>
        <repository>
            <id>scala-tools.org</id>
            <name>Scala-Tools Maven2 Repository</name>
            <url>http://scala-tools.org/repo-releases</url>
        </repository>

        <repository>
            <id>spring</id>
            <url>https://maven.aliyun.com/repository/spring</url>
        </repository>

        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>
    </repositories>


    <dependencies>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-scala-bridge_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>${flink.version}</version>
            <!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!-- flink-connector-kafka -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!-- flink-connector-jdbc -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!--        mysql-cdc-->
        <dependency>
            <groupId>com.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
            <version>2.3.0</version>
        </dependency>

        <!--        mysql-->
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.29</version>
        </dependency>


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-log4j12 -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.21</version>
            <scope>compile</scope>
        </dependency>

        <!-- https://mvnrepository.com/artifact/log4j/log4j -->
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
        </dependency>

    </dependencies>

    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-dependencies</artifactId>
                <version>${spring-boot.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <version>2.3.7.RELEASE</version>
                <configuration>
                    <mainClass>com.cityos.Flink1142Application</mainClass>
                </configuration>
                <executions>
                    <execution>
                        <id>repackage</id>
                        <goals>
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

有兴趣的看看,没兴趣的或者感觉不屑的划过就好,莫喷我,代码写的确实是丑。文章来源地址https://www.toymoban.com/news/detail-505113.html

到了这里,关于Flink CDC整库同步(多表异构同步)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • flink cdc MySQL2Doris 案例分享 解决分库多表同步

    使用flink cdc,完成mysql 多库 多表同时同步到doris中 flink 1.14.4 doris 1.1.0 flink-connector-mysql-cdc 2.2.1版本 一直会报异常 java.lang.NoClassDefFoundError: org/apache/flink/shaded/guava18/com/google/common/util/concurrent/ThreadFactoryBuilder 从官网下载依赖,然后本地添加进去flink-sql-connector-mysql-cdc-2.2.0 由于 U

    2023年04月09日
    浏览(40)
  • flinkcdc 3.0 源码学习之任务提交脚本flink-cdc.sh

    大道至简,用简单的话来描述复杂的事,我是Antgeek,欢迎阅读. 在flink 3.0版本中,我们仅通过一个简单yaml文件就可以配置出一个复杂的数据同步任务, 然后再来一句 bash bin/flink-cdc.sh mysql-to-doris.yaml 就可以将任务提交, 本文就是来探索一下这个shell脚本,主要是研究如何通过一个shell命

    2024年02月19日
    浏览(40)
  • FLink多表关联实时同步

    Oracle-Debezium-Kafka-Flink-PostgreSQL Flink消费Kafka中客户、产品、订单(ID)三张表的数据合并为一张订单(NAME)表。 Oracle内创建三张表 PostgreSQL内创建一张表 其他前置环境 Oracle、PostgreSQL、Kafka、FLink、Debezium-Server的部署参见本系列其他文章搭建。 采用前置条件中的语句建表即可,

    2023年04月25日
    浏览(64)
  • Flink CDC数据同步

    一、什么是FLink Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。 接下来,我们来介绍一下 Flink 架构中的重要方面。 任何类型的数据都可以形成一种事

    2024年02月08日
    浏览(45)
  • FlinkCDC第三部分-同步mysql到mysql,ctrl就完事~(flink版本1.16.2)

    本文介绍了  来源单表-目标源单表同步,多来源单表-目标源单表同步。 注:1.16版本、1.17版本都可以使用火焰图,生产上最好关闭,详情见文章末尾 Flink版本:1.16.2 环境:Linux CentOS 7.0、jdk1.8 基础文件: flink-1.16.2-bin-scala_2.12.tgz、 flink-connector-jdbc-3.0.0-1.16.jar、(maven仓库目录:

    2024年02月11日
    浏览(44)
  • 基于 Flink CDC 的实时同步系统

    摘要: 本文整理自科杰科技大数据架构师张军,在 FFA 2022 数据集成专场的分享。本篇内容主要分为四个部分: 功能概述 架构设计 技术挑战 生产实践 Tips: 点击 「阅读原文」 查看原文视频演讲 ppt 科杰科技是专门做大数据服务的供应商,目前的客户包括能源、金融、证券等

    2024年02月05日
    浏览(44)
  • 【实战-01】flink cdc 实时数据同步利器

    cdc github源码地址 cdc官方文档 对很多初入门的人来说是无法理解cdc到底是什么个东西。 有这样一个需求,比如在mysql数据库中存在很多数据,但是公司要把mysql中的数据同步到数据仓库(starrocks), 数据仓库你可以理解为存储了各种各样来自不同数据库中表。 数据的同步目前对

    2023年04月08日
    浏览(51)
  • flink oracle cdc实时同步(超详细)

    官方文档:https://github.com/ververica/flink-cdc-connectors/blob/release-master/docs/content/connectors/oracle-cdc.md 本文参照官方文档来记录Oracle CDC 的配置。 在本文开始前,需要先安装Oracle,有兴趣的同学可以参考博主之前写的《docker下安装oracle11g(一次安装成功)》。 如果要做oracle的实时同步

    2024年02月12日
    浏览(44)
  • Flink CDC实时同步PG数据库

    JDK:1.8 Flink:1.16.2 Scala:2.11 Hadoop:3.1.3 github地址:https://github.com/rockets0421/FlinkCDC-PG.git  1、更改配置文件postgresql.conf # 更改wal日志方式为logical wal_level = logical # minimal, replica, or logical # 更改solts最大数量(默认值为10),flink-cdc默认一张表占用一个slots max_replication_slots = 20 # m

    2024年02月13日
    浏览(64)
  • Flink 实现 MySQL CDC 动态同步表结构

    作者:陈少龙,腾讯 CSIG 高级工程师 使用 Flink CDC(Change Data Capture) 实现数据同步被越来越多的人接受。本文介绍了在数据同步过程中,如何将 Schema 的变化实时地从 MySQL 中同步到 Flink 程序中去。 MySQL 存储的数据量大了之后往往会出现查询性能下降的问题,这时候通过 Flin

    2024年02月04日
    浏览(77)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包