【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型

这篇具有很好参考价值的文章主要介绍了【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN多分类预测模型

一、展示效果

【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型

【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型

【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型
【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型

二、思路

在正常CNN卷积神经网络训练阶段之后,使用进化算法(蜜蜂算法)拟合深度学习权重和偏差。

本文案例数据中, 用深度模型进行4分类预测。

  1. 先在 CNN 训练之后,为每个类别权重创建初始模糊模型
  2. 然后提取全连接层的权重进行进化寻优,并替换初始权重
  3. 最后,优化后的权重(来自全连接层)建立模型。

数据情况:

 %%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(357);

P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);

P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test  = mapminmax('apply', P_test, ps_input);

t_train =  categorical(T_train)';
t_test  =  categorical(T_test )';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(P_train, 12, 1, 1, M));
p_test  =  double(reshape(P_test , 12, 1, 1, N));

三、CNN结构参数

%%  构造网络结构
layers = [
 imageInputLayer([12, 1, 1])             % 输入层
 
 convolution2dLayer([2, 1], 16)          % 卷积核大小为2*1 生成16个卷积
 batchNormalizationLayer                 % 批归一化层
 reluLayer                               % relu激活层
 
 maxPooling2dLayer([2, 1], 'Stride', 1)  % 最大池化层 大小为2*1 步长为2
 
 convolution2dLayer([2, 1], 32)          % 卷积核大小为2*1 生成32个卷积
 batchNormalizationLayer                 % 批归一化层
 reluLayer                               % relu激活层
 
 maxPooling2dLayer([2, 1], 'Stride', 1)  % 最大池化层,大小为2*2,步长为2

 fullyConnectedLayer(4)                  % 全连接层(类别数) 
 softmaxLayer                            % 损失函数层
 classificationLayer];                   % 分类层

%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 500, ...                  % 最大训练次数 500
    'InitialLearnRate', 1e-3, ...          % 初始学习率为0.001
    'L2Regularization', 1e-04, ...         % L2正则化参数
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.5, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 450, ...        % 经过450次训练后 学习率为 0.001 * 0.5
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'ValidationPatience', Inf, ...         % 关闭验证
    'Plots', 'none', ...      % 画出曲线
    'Verbose', 1);

四、IFCNN结构参数

Params.MaxIt=20;%进化算法迭代次数
Params.nScoutBee = 10;%进化算法种群数量
%  训练模型
[net,info] = trainNetwork(p_train, t_train, layers, options);
% 提取全连接层的权重进行进化
FullConn=netobj.Layers(10, 1).Weights;
netbias=netobj.Layers(10, 1).Bias;

%% 为每个类权重制作基本模糊模型
% 模糊 C 均值 (FCM) 簇数
ClusNum=3; 
% 为每个类别权重创建初始模糊模型
for i=1:sizefinal
fism{i}=GenerateFuzzy(datam{i},ClusNum);
end


%% 训练输出提取
for i=1:sizefinal
TrTar{i}=datam{i}.TrainTargets;
TrInp{i}=datam{i}.TrainInputs;
TrainOutputs{i}=evalfis(TrInp{i},BeesFISm{i});
end;

% 将输出单元格转换为矩阵
for i=1:sizefinal
EvolvedFullConn(i,:)=TrainOutputs{i}';
end;

%% 替换进化的权重
netobj.Layers(10, 1).Weights=EvolvedFullConn;
% 新网络
net2=netobj.Layers;

五、代码获取

后台私信回复“45期”获取下载链接。文章来源地址https://www.toymoban.com/news/detail-505364.html

到了这里,关于【MATLAB第46期】基于MATLAB的改进模糊卷积神经网络IFCNN分类预测模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包