实验 09 线性回归与波士顿房价预测

这篇具有很好参考价值的文章主要介绍了实验 09 线性回归与波士顿房价预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性回归与波士顿房价预测

一、实验目的

  • 掌握机器学习的基本概念
  • 掌握线性回归的实现过程
  • 应用LinearRegression实现回归预测
  • 知道回归算法的评估标准及其公式
  • 知道过拟合与欠拟合的原因以及解决方法

二、实验设备

  • Jupter Notebook

三、实验内容

人们在生活中经常遇到分类与预测的问题,目标变量可能受多个因素影响,根据相关系数可以判断影响因子的重要性。正如一个病人得某种病是多种因素影响造成的。

房子作为居住的场所,对每个人而言是不可或缺的。而房价的高低也是受多种因素的影响。房子所处的城市是一线还是二线,房子周边的交通便利程度,房子附近是否存在医院或者学校等,众多因素都会影响房价。

“回归”是由英国著名生物学家兼统计学家高尔顿(Francis Galton,1822~1911.生物学家达尔文的表弟)在研究人类遗传问题时提出来的。19世纪高斯系统地提出最小二乘估计,从而使回归分析得到蓬勃发展。

波士顿房价数据源于美国某经济学杂志上,分析研究波士顿房价( Boston HousePrice)的数据集。数据集中的每一行数据都是对波士顿周边或城镇房价的情况描述,本实验以波士顿房价数据集为线性回归案例数据,进行模型训练,预测波士顿房价。

3.1 了解数据

首先导入需要的包

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn import preprocessing

加载波士顿房价的数据集

data = load_boston()
data_pd = pd.DataFrame(data.data,columns=data.feature_names)
data_pd['price'] = data.target

在拿到数据之后,先要查看数据的类型,是否有空值,数据的描述信息等等。

可以看到数据都是定量数据。

# 查看数据类型
data_pd.describe()
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT price
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 12.653063 22.532806
std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 7.141062 9.197104
min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 1.730000 5.000000
25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 6.950000 17.025000
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 11.360000 21.200000
75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 16.955000 25.000000
max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 37.970000 50.000000

接下来要查看数据是否存在空值,从结果来看数据不存在空值。

# 查看空缺值
data_pd.isnull().sum()
CRIM       0
ZN         0
INDUS      0
CHAS       0
NOX        0
RM         0
AGE        0
DIS        0
RAD        0
TAX        0
PTRATIO    0
B          0
LSTAT      0
price      0
dtype: int64

可以看出来数据集中没有空缺值。

# 查看数据大小
data_pd.shape
(506, 14)

数据集有14列,506行

查看数据前5行,同时给出数据特征的含义

data_pd.head()
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT price
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2

数据集变量说明下,方便大家理解数据集变量代表的意义。

  • CRIM: 城镇人均犯罪率
  • ZN: 住宅用地所占比例
  • INDUS: 城镇中非住宅用地所占比例
  • CHAS: 虚拟变量,用于回归分析
  • NOX: 环保指数
  • RM: 每栋住宅的房间数
  • AGE: 1940 年以前建成的自住单位的比例
  • DIS: 距离 5 个波士顿的就业中心的加权距离
  • RAD: 距离高速公路的便利指数
  • TAX: 每一万美元的不动产税率
  • PTRATIO: 城镇中的教师学生比例
  • B: 城镇中的黑人比例
  • LSTAT: 地区中有多少房东属于低收入人群
  • price: 自住房屋房价中位数(也就是均价)

3.2 分析数据

计算每一个特征和price的相关系数

data_pd.corr()['price']
CRIM      -0.388305
ZN         0.360445
INDUS     -0.483725
CHAS       0.175260
NOX       -0.427321
RM         0.695360
AGE       -0.376955
DIS        0.249929
RAD       -0.381626
TAX       -0.468536
PTRATIO   -0.507787
B          0.333461
LSTAT     -0.737663
price      1.000000
Name: price, dtype: float64

将相关系数绝对值大于0.5的特征画图显示出来:

corr = data_pd.corr()
corr = corr['price']
corr[abs(corr)>0.5].sort_values().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x13d1990e5e0>

实验 09 线性回归与波士顿房价预测

可以看出LSTAT、PTRATIO、RM三个特征的相关系数大于0.5,下面画出三个特征关于price的散点图。

(1)LSTAT和price的散点图

data_pd.plot(kind="scatter",x="LSTAT",y="price")
<matplotlib.axes._subplots.AxesSubplot at 0x13d198bc3d0>

实验 09 线性回归与波士顿房价预测

data_pd.plot(kind="scatter",x="PTRATIO",y="price")
<matplotlib.axes._subplots.AxesSubplot at 0x13d199dca60>

实验 09 线性回归与波士顿房价预测

data_pd.plot(kind="scatter",x="RM",y="price")
<matplotlib.axes._subplots.AxesSubplot at 0x13d19a2f430>

实验 09 线性回归与波士顿房价预测

可以看出三个特征和价格都有明显的线性关系。

3.3 建立模型

(一)使用一个变量进行预测

(1)使用LASTAT做一元线性回归
首先制作训练集和测试集

# 制作训练集和测试集的数据
feature_cols = ['LSTAT']
X = data_pd[feature_cols]
y = data_pd['price']

# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
y.describe()
count    506.000000
mean      22.532806
std        9.197104
min        5.000000
25%       17.025000
50%       21.200000
75%       25.000000
max       50.000000
Name: price, dtype: float64
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)

print(linreg.intercept_)

# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
63.81849572918555

[('PTRATIO', -2.2442477329043706)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 74.6287048997467

画图

import seaborn as sns #seaborn就是在matplot的基础上进行了进一步封装
sns.lmplot(x='LSTAT', y='price', data=data_pd, aspect=1.5, scatter_kws={'alpha':0.2})
<seaborn.axisgrid.FacetGrid at 0x13d1b0f5a00>

实验 09 线性回归与波士顿房价预测

(2)使用PTRATIO做一元线性回归

# 制作训练集和测试集的数据
feature_cols = ['PTRATIO']
X = data_pd[feature_cols]
y = data_pd['price']

# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)

print(linreg.intercept_)

# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
61.54376809966996

[('PTRATIO', -2.1175617470715635)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 54.541969092283985

画图

import seaborn as sns #seaborn就是在matplot的基础上进行了进一步封装
sns.lmplot(x='PTRATIO', y='price', data=data_pd, aspect=1.5, scatter_kws={'alpha':0.2})
<seaborn.axisgrid.FacetGrid at 0x13d1b140490>

实验 09 线性回归与波士顿房价预测

(3)使用RM做一元线性回归

# 制作训练集和测试集的数据
feature_cols = ['RM']
X = data_pd[feature_cols]
y = data_pd['price']

# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)

print(linreg.intercept_)

# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
-32.662292886508155

[('RM', 8.738014969584246)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 51.81438126437724

画图

import seaborn as sns #seaborn就是在matplot的基础上进行了进一步封装
sns.lmplot(x='RM', y='price', data=data_pd, aspect=1.5, scatter_kws={'alpha':0.2})
<seaborn.axisgrid.FacetGrid at 0x13d1b1addc0>

实验 09 线性回归与波士顿房价预测

根据均方根误差进行模型比较

答案:RM一元回归分析的均方根误差最小,所以该模型最好

(二)使用多元线性回归分析进行预测

使用LSTAT,PTRATIO,RM做多元线性回归分析

首先制作训练集和测试集

# 制作训练集和测试集的数据
feature_cols = ['LSTAT','PTRATIO','RM']
X = data_pd[feature_cols]
y = data_pd['price']

# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)

print(linreg.intercept_)

# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
24.145147504479777

[('LSTAT', -0.6077646658186993),
 ('PTRATIO', -0.9890097312795556),
 ('RM', 3.894020674969254)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 22.06146178562167

画图比较

将训练好的测试集和原始测试集绘图比较

import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['font.sans-serif'] = 'SimHei'
fig = plt.figure(figsize=(10,6)) ##设定空白画布,并制定大小
##用不同的颜色表示不同数据
plt.plot(range(test_Y.shape[0]),test_Y,color="blue", linewidth=1.5, linestyle="-")
plt.plot(range(test_Y.shape[0]),y_predict,color="red", linewidth=1.5, linestyle="-.")
plt.legend(['真实值','预测值'])
plt.show() ##显示图片

实验 09 线性回归与波士顿房价预测

根据均方根误差进行模型比较

答案:多元线性回归分析的均方根误差最小,所以该模型最好文章来源地址https://www.toymoban.com/news/detail-506318.html

文章目录

序号 文章目录 直达链接
实验一 语法、变量和数据类型 https://want595.blog.csdn.net/article/details/131396590
实验二 函数调用 https://want595.blog.csdn.net/article/details/131397066
实验三 布尔变量与条件语句 https://want595.blog.csdn.net/article/details/131397310
实验四 列表 https://want595.blog.csdn.net/article/details/131397482
实验五 循环 https://want595.blog.csdn.net/article/details/131397558
实验六 字符串与字典 https://want595.blog.csdn.net/article/details/131397724
实验七 数据探索与数据预处理 https://want595.blog.csdn.net/article/details/131474545
实验八 利用线形图可视化股票的走势 https://want595.blog.csdn.net/article/details/128612047
实验九 线性回归与波士顿房价预测 https://want595.blog.csdn.net/article/details/131398054

到了这里,关于实验 09 线性回归与波士顿房价预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习(线性回归实训)------波士顿房价

    1.机器学习 机器学习是人工智能 (AI) 和计算机科学的分支,专注于使用数据和算法来模仿人类学习的方式,逐渐提高其准确性。机器学习是不断成长的数据科学领域的重要组成部分。 通过使用统计方法,对算法进行训练,以进行分类或预测,揭示数据挖掘项目中的关键洞察

    2024年02月06日
    浏览(52)
  • 多元线性回归的python代码实现(基于sklearn的波士顿房价boston数据集为例)

    基于sklearn自带数据集波士顿房价数据集进行多元线性回归算法代码实现,其数据集包括13个特征向量,共计506个样本集。 本文代码实现步骤如下: 1. 获取数据集 2. 数据集切分,老规矩,80%训练,20%测试 3. 数据预处理(本用例尝试过归一化处理,但发现效果不好,不是每一个

    2024年02月06日
    浏览(46)
  • python 波士顿房价预测

    数据集地址:Index of /ml/machine-learning-databases/housing (uci.edu) 数据集中共有506条样本数据,每条样本包含了13个影响房价的特征。 数据集格式 np.fromfile()  读取数据没有数据类型和数据的形状。所以这里使用了data.reshape()重新变换成原始的形状。 (7084,) (506, 14) (14,) [6.320e-03 1.800e+

    2023年04月08日
    浏览(38)
  • 基于回归分析的波士顿房价分析

    项目实现步骤: 1.项目结构 2.处理数据 3.处理绘图 4.对数据进行分析 5.结果展示 一.项目结构 二.处理数据 使用sklearn的datasets时,对应的波士顿房价数据已经被“移除”,在获取数据时,会出现 ,此时,在该提示的下方会有相关的解决方法 不建议使用提供的方法,对应方法的

    2024年02月09日
    浏览(36)
  • python-机器学习-波士顿房价回归分析

            以波士顿房价数据集为对象,理解数据和认识数据,掌握 梯度下降法 和 回归分析 的初步方法,掌握 模型正则化 的一般方法,对回归分析的结果解读。         波士顿房价数据集是20世纪70年代中期波士顿郊区房价的中位数,统计了当时城市的13个指标与房价

    2024年02月06日
    浏览(30)
  • paddle实现波士顿房价预测任务

    要点: 参考官方案例 飞桨PaddlePaddle-源于产业实践的开源深度学习平台 1 加载飞桨框架的相关类库 飞桨支持两种深度学习建模编写方式,更方便调试的动态图模式和性能更好并便于部署的静态图模式。 动态图模式(命令式编程范式,类比Python):解析式的执行方式。用户无

    2023年04月14日
    浏览(40)
  • 机器学习 波士顿房价预测 Boston Housing

    目录 一:前言 二:模型预测(KNN算法) 三:回归模型预测比对 波士顿房价 是机器学习中很常用的一个 解决回归问题 的数据集 数据统计于1978年,包括506个房价样本,每个样本包括波士顿不同郊区房屋的13种特征信息, 比如:住宅房间数、城镇教师和学生比例等 标签值是每栋

    2024年02月03日
    浏览(42)
  • 机器学习基础10-审查回归算法(基于波士顿房价的数据集)

    上一节介绍了如何审查分类算法,并介绍了六种不同的分类算法,还 用同一个数据集按照相同的方式对它们做了审查,本章将用相同的方式对回归算法进行审查。 在本节将学到: 如何审查机器学习的回归算法。 如何审查四种线性分类算法。 如何审查三种非线性分类算法。

    2024年02月11日
    浏览(35)
  • 【机器学习】P25 随机森林算法(2) 实现 “波士顿房价” 预测

    随机森林(Random Forest)算法 是一种 集成学习(Ensemble Learning)方法,它由多个决策树组成,是一种分类、回归和特征选择的机器学习算法。 在随机森林中,每个决策树都是独立地训练的,每棵树的建立都是基于随机选取的 特征子集 和随机选取的 训练样本集 。 在分类问题

    2024年02月01日
    浏览(50)
  • 计算机视觉学习笔记(二)---传统神经网络之波士顿房价预测

      本文承接pytorch学习笔记(一),以波士顿房价预测为例演示利用pytorch搭建一个简单的传统神经网络   数据集为波士顿房价数据,预测目标为MEDV(标签),其余变量均为特征。由于是csv格式可以直接采用pandas包下的read_csv读取   观察到在输入的数据中,有的特征普遍

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包