随机过程的均值函数、自相关函数、协方差函数

这篇具有很好参考价值的文章主要介绍了随机过程的均值函数、自相关函数、协方差函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

随 机 过 程 的 均 值 是 定 义 在 某 个 时 间 点 上 的 随 机 变 量 的 函 数 随机过程的均值是定义在某个时间点上的随机变量的函数
协 方 差 函 数 C X ( t 1 , t 2 ) = E ( ( X t 1 − E ( X t 1 ) ) ( X t 2 − E ( X t 2 ) ) ) 协 方 差 函 数 就 是 同 一 个 随 机 过 程 在 两 个 时 间 点 的 协 方 差 协方差函数C_X(t_1,t_2)=E((X_{t_1}-E{(X_{t_1})})(X_{t_2}-E{(X_{t_2})}))\\ 协方差函数就是同一个随机过程在两个时间点的协方差 CX(t1,t2)=E((Xt1E(Xt1))(Xt2E(Xt2)))

自 相 关 函 数 R X ( t 1 , t 2 ) = E ( X t 1 X t 2 ) C X ( t 1 , t 2 ) = R X ( t 1 , t 2 ) − E ( X t 1 ) E ( X t 2 ) 自相关函数R_X(t_1,t_2)=E(X_{t_1}X_{t_2})\\ C_X(t_1,t_2)=R_X(t_1,t_2)-E(X_{t_1})E(X_{t_2}) RX(t1,t2)=E(Xt1Xt2)CX(t1,t2)=RX(t1,t2)E(Xt1)E(Xt2)

随机过程的均值函数、自相关函数、协方差函数文章来源地址https://www.toymoban.com/news/detail-507105.html

到了这里,关于随机过程的均值函数、自相关函数、协方差函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 协方差,协方差矩阵,相关系数

    对于一个随机变量的分布特征,可以用均值,方差,标准差来描述。对于两个随机变量,可以用协方差,和相关系数来描述两个随机变量的相互关系。 注意在机器学习中一个向量为m*n,m表示样本个数,n表示特征个数,这里的随机变量表示的是每一列,而不是每一行。  协方

    2024年02月11日
    浏览(57)
  • 协方差、样本协方差、协方差矩阵、相关系数详解(python代码)

    对于一个随机变量的分布特征,可以由均值、方差、标准差等进行描述。而对于两个随机变量的情况,有协方差和相关系数来描述两个随机变量的相互关系。 本文主要参考概率论与数理统计的教科书,整理了协方差、样本协方差、协方差矩阵、相关系数的概念解释和代码。

    2023年04月10日
    浏览(42)
  • 【什么是自相关矩阵,自协方差矩阵,互相关矩阵,互协方差矩阵?】

    最近看模式识别课程的时候卡在了一个地方,见下图: 协方差矩阵倒还知道,自相关矩阵?怎么推导的?它有什么意义?上网查了资料,要么晦涩难懂,要么一堆废话,这里我想尽量用最简洁的语言讲清楚它们。 向量的内积与外积 场景:机器学习 样本(n个样本,N个维度(

    2023年04月20日
    浏览(43)
  • 【应用统计学】随机变量的概率分布,数学期望和方差及协方差

     【例4-5】某厂对一批产品进行抽检,该批产品含有10件正品及3件次品。设每次抽取时,各件产品被抽到的可能性相等。一件一件抽取产品进行检验,每次抽取的产品都不放回该批产品中,求直到抽得正品为止所需次数X的分布律。 解: 由于每次抽取的产品不再放回,因此离散型

    2024年02月05日
    浏览(53)
  • 概率论之 多维随机变量的期望,协方差矩阵

    上一次写了一维随机变量的期望,方差,协方差。本次来记录多维随机变量的期望和协方差矩阵。这一块内容由浅入深,因此会有更新。 假设系统状态有多个分量 x 1 , x 2 , … , x n x_1,x_2,dots,x_n x 1 ​ , x 2 ​ , … , x n ​ ,则将其表示为向量的形式 X = ( x 1 , x 2 , … , x n ) T X=

    2024年02月04日
    浏览(45)
  • 概率论:方差、标准差、协方差、皮尔逊相关系数、线性相关

    一个随机变量,的值的变化程度可以用方差计算:  ;其中 是期望。 另外一种等价表达式:      其中为均值,N为总体例数 我们举个例子: 服从均一分布,取值为0.1,0.2,0.3,0.4,0.5 ,每种值的概率是20%,可算出期望是0.3,那么方差就是: 标准差是方差的平方根,随机

    2024年02月09日
    浏览(49)
  • 二维随机向量的数学期望E与协方差σ

    目录 1. 二维随机向量(X,Y)的数学期望EX, EY 2. 二维随机向量函数z=g(X,Y)的数学期望EZ 3. 二维随机向量(X,Y)的方差DX, DY 4. 二维随机向量的性质(和、积的数学期望E与方差D) 5. 二维随机向量的协方差COV和相关系数ρ 5.1 协方差COV定义 5.2 协方差COV的性质  5.3 相关系数ρ 离散形式 和

    2024年02月02日
    浏览(42)
  • 数字信号谱估计方法对比仿真——估计自相关,周期图法,协方差法,burg算法,修正协方差法

    目录 一、理论基础 1.1自相关谱估计 1.2周期图法谱估计 1.3协方差法谱估计 1.4burg算法谱估计 1.5修正协方差谱估计 二、核心程序 三、仿真结论        自相关谱估计、周期图法谱估计、协方差法谱估计、Burg算法谱估计和修正协方差谱估计是常见的信号谱估计方法,用于分析信

    2024年02月10日
    浏览(40)
  • 阿白数模笔记之协方差矩阵与相关矩阵

    目录 前言 一、方差 二、协方差矩阵 ①协方差 ②自协方差矩阵 互协方差矩阵​编辑 ③互协方差矩阵 Ⅰ、数学定义 Ⅱ、MATLAB运算 三、相关矩阵 ①person相关系数 ②自相关矩阵 ③互相关矩阵 Ⅰ、数学定义 Ⅱ、matlab运算         作为数模小白,前天在学习FA算法时看到协方差

    2024年02月11日
    浏览(44)
  • 【概率论与数理统计】猴博士 笔记 p36-37 协方差、相关系数、不相关、相互独立时的期望和方差

    接下来做几道例题,练习一下套公式: 例1: 解: 前4个就是简单的套公式: 第5个有点类似分配律: C o v ( 2 X + 3 Y , 4 X + 5 Y ) = 8 C o v ( X , X ) + 10 C o v ( X , Y ) + 12 C o v ( X , Y ) + 15 C o v ( Y , Y ) Cov(2X+3Y,4X+5Y)=\\\\8Cov(X,X)+10Cov(X,Y)+12Cov(X,Y)+15Cov(Y,Y) C o v ( 2 X + 3 Y , 4 X + 5 Y ) = 8 C o v ( X , X

    2023年04月08日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包