[SAM 代码解读 1] class Sam(nn.Module)

这篇具有很好参考价值的文章主要介绍了[SAM 代码解读 1] class Sam(nn.Module)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 代码解读都写在注释了

目录

sam.py

image_encoder.py

重点(Calculate decomposed Relative Positional Embeddings)


GitHub 官方代码文章来源地址https://www.toymoban.com/news/detail-507116.html

sam.py

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch import nn
from torch.nn import functional as F

from typing import Any, Dict, List, Tuple

from .image_encoder import ImageEncoderViT
from .mask_decoder import MaskDecoder
from .prompt_encoder import PromptEncoder


class Sam(nn.Module):
    mask_threshold: float = 0.0
    image_format: str = "RGB"

    def __init__(
        self,
        image_encoder: ImageEncoderViT,
        prompt_encoder: PromptEncoder,
        mask_decoder: MaskDecoder,
        pixel_mean: List[float] = [123.675, 116.28, 103.53],
        pixel_std: List[float] = [58.395, 57.12, 57.375],
    ) -> None:
        """
        SAM predicts object masks from an image and input prompts.

        Arguments:
          image_encoder (ImageEncoderViT): The backbone used to encode the
            image into image embeddings that allow for efficient mask prediction.
          prompt_encoder (PromptEncoder): Encodes various types of input prompts.
          mask_decoder (MaskDecoder): Predicts masks from the image embeddings
            and encoded prompts.
          pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
          pixel_std (list(float)): Std values for normalizing pixels in the input image.
        """
        super().__init__()
        self.image_encoder = image_encoder
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.register_buffer("pixel_mean",
                             torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std",
                             torch.Tensor(pixel_std).view(-1, 1, 1), False)

    @property
    def device(self) -> Any:
        return self.pixel_mean.device

    @torch.no_grad()
    def forward(
        self,
        batched_input: List[Dict[str, Any]],
        multimask_output: bool,
    ) -> List[Dict[str, torch.Tensor]]:
        """
        Predicts masks end-to-end from provided images and prompts.
        If prompts are not known in advance, using SamPredictor is
        recommended over calling the model directly.

        Arguments:
          batched_input (list(dict)): A list over input images, each a
            dictionary with the following keys. A prompt key can be
            excluded if it is not present.
              'image': The image as a torch tensor in 3xHxW format,
                already transformed for input to the model.
              'original_size': (tuple(int, int)) The original size of
                the image before transformation, as (H, W).
              'point_coords': (torch.Tensor) Batched point prompts for
                this image, with shape BxNx2. Already transformed to the
                input frame of the model.
              'point_labels': (torch.Tensor) Batched labels for point prompts,
                with shape BxN.
              'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
                Already transformed to the input frame of the model.
              'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
                in the form Bx1xHxW.
          multimask_output (bool): Whether the model should predict multiple
            disambiguating masks, or return a single mask.

        Returns:
          (list(dict)): A list over input images, where each element is
            as dictionary with the following keys.
              'masks': (torch.Tensor) Batched binary mask predictions,
                with shape BxCxHxW, where B is the number of input prompts,
                C is determined by multimask_output, and (H, W) is the
                original size of the image.
              'iou_predictions': (torch.Tensor) The model's predictions
                of mask quality, in shape BxC.
              'low_res_logits': (torch.Tensor) Low resolution logits with
                shape BxCxHxW, where H=W=256. Can be passed as mask input
                to subsequent iterations of prediction.
        """
        # image 先处理
        input_images = torch.stack(
            [self.preprocess(x["image"]) for x in batched_input], dim=0)
        # 获取image embedding
        image_embeddings = self.image_encoder(input_images)

        # 批处理图片
        outputs = []
        for image_record, curr_embedding in zip(batched_input,
                                                image_embeddings):
            # 提示:点坐标,鼠标点的位置,or设置一个点
            if "point_coords" in image_record:
                points = (image_record["point_coords"],
                          image_record["point_labels"])
            else:
                points = None
            # 提示:boxes框选坐标,mask_inputs掩码提示
            sparse_embeddings, dense_embeddings = self.prompt_encoder(
                points=points,
                boxes=image_record.get("boxes", None),
                masks=image_record.get("mask_inputs", None),
            )

            # decoder 解码
            low_res_masks, iou_predictions = self.mask_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )

            # mask后处理
            masks = self.postprocess_masks(
                low_res_masks,
                input_size=image_record["image"].shape[-2:],
                original_size=image_record["original_size"],
            )
            masks = masks > self.mask_threshold  # 这样处理的?!大于阈值的是前景否则是背景

            # 输出 output
            outputs.append({
                "masks": masks,
                "iou_predictions": iou_predictions,
                "low_res_logits": low_res_masks,
            })

        return outputs

    def postprocess_masks(
        self,
        masks: torch.Tensor,
        input_size: Tuple[int, ...],
        original_size: Tuple[int, ...],
    ) -> torch.Tensor:
        """
        Remove padding and upscale masks to the original image size.
        非常的巧妙的反向三步操作!!

        Arguments:
          masks (torch.Tensor): Batched masks from the mask_decoder,
            in BxCxHxW format.
          input_size (tuple(int, int)): The size of the image input to the
            model, in (H, W) format. Used to remove padding.
          original_size (tuple(int, int)): The original size of the image
            before resizing for input to the model, in (H, W) format.

        Returns:
          (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
            is given by original_size.
        """
        # 调整到图像嵌入大小(模型处理过程中分辨率下降 /4?)
        masks = F.interpolate(
            masks,
            (self.image_encoder.img_size, self.image_encoder.img_size),
            mode="bilinear",
            align_corners=False,
        )

        # 去掉零填充padding
        masks = masks[..., :input_size[0], :input_size[1]]

        # 之前进行了长边缩放, 反操作
        masks = F.interpolate(masks,
                              original_size,
                              mode="bilinear",
                              align_corners=False)
        return masks

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input.
        只进行了normlize 和 padding操作, 长边缩放在transforms里 get_preprocess_shape
        """
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        x = F.pad(x, (0, padw, 0, padh))

        return x

image_encoder.py

class Attention(nn.Module):
    """Multi-head Attention block with relative position embeddings.
    中规中矩的实现
    
    用torch.nn.modules.MultiheadAttention()效率可能更高(torch>=2.0貌似是)
    self-attention还有很多的变体, flashAttention等(LLM中)
    """
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = True,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads.
            qkv_bias (bool):  If True, add a learnable bias to query, key, value.
            rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            input_size (tuple(int, int) or None): Input resolution for calculating the relative
                positional parameter size.
        """
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5

        # 计算q,k,v
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        # 输出project, 或者用(head_dim*num_heads,dim)防止num_heads不能被dim整除
        self.proj = nn.Linear(dim, dim)

        # relative positional embeddings
        self.use_rel_pos = use_rel_pos
        if self.use_rel_pos:
            assert (
                input_size is not None
            ), "Input size must be provided if using relative positional encoding."
            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(
                torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(
                torch.zeros(2 * input_size[1] - 1, head_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape
        # qkv with shape (3, B, nHead, H * W, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads,
                                  -1).permute(2, 0, 3, 1, 4)
        # q, k, v with shape (B * nHead, H * W, C)
        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)

        # 计算qi&kj的相似度
        attn = (q * self.scale) @ k.transpose(-2, -1)

        # 在计算attn(softmax)前加入相似位置嵌入编码,也有用drop的
        # attn 和 q,
        if self.use_rel_pos:
            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h,
                                          self.rel_pos_w, (H, W), (H, W))

        # 常规的计算和reshape
        attn = attn.softmax(dim=-1)
        x = (attn @ v).view(B, self.num_heads, H, W,
                            -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)

        # 输出的 project
        x = self.proj(x)

        return x


def window_partition(x: torch.Tensor,
                     window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size. patch之间的window大小

    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size,
               window_size, C)
    windows = x.permute(0, 1, 3, 2, 4,
                        5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(windows: torch.Tensor, window_size: int,
                       pad_hw: Tuple[int, int],
                       hw: Tuple[int, int]) -> torch.Tensor:
    """
    Window unpartition into original sequences and removing padding.
    Args:
        windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        pad_hw (Tuple): padded height and width (Hp, Wp).
        hw (Tuple): original height and width (H, W) before padding.

    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    Hp, Wp = pad_hw  # padding后的image的大小
    H, W = hw  # image的大小
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size,
                     window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    # 去掉padding的zero
    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()

    return x

class PatchEmbed(nn.Module):
    """
    Image to Patch Embedding.

    有一点需要注意的是: 并没有合并patch的数量直接用的 image_H//ks, image_W//ks
    """
    def __init__(
        self,
        kernel_size: Tuple[int, int] = (16, 16),
        stride: Tuple[int, int] = (16, 16),
        padding: Tuple[int, int] = (0, 0),
        in_chans: int = 3,
        embed_dim: int = 768,
    ) -> None:
        """
        Args:
            kernel_size (Tuple): kernel size of the projection layer.
            stride (Tuple): stride of the projection layer.
            padding (Tuple): padding size of the projection layer.
            in_chans (int): Number of input image channels.
            embed_dim (int): Patch embedding dimension.
        """
        super().__init__()

        # 经典操纵,使用卷积进行patch embedding
        # embed_dim既嵌入的维度数,很巧妙!
        # kernel_size : patch的大小,若==stride:non-overlapping ,若!=stride,不同patch有重叠
        self.proj = nn.Conv2d(in_chans,
                              embed_dim,
                              kernel_size=kernel_size,
                              stride=stride,
                              padding=padding)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        return x
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
    """
    window_size : window_size大小的窗口内计算注意力,减少计算量!
    """
    def __init__(
            self,
            img_size: int = 1024,
            patch_size: int = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            depth: int = 12,
            num_heads: int = 12,
            mlp_ratio: float = 4.0,
            out_chans: int = 256,
            qkv_bias: bool = True,
            norm_layer: Type[nn.Module] = nn.LayerNorm,
            act_layer: Type[nn.Module] = nn.GELU,
            use_abs_pos: bool = True,
            use_rel_pos: bool = False,
            rel_pos_zero_init: bool = True,
            window_size: int = 0,
            global_attn_indexes: Tuple[int, ...] = (),
    ) -> None:
        """
        Args:
            img_size (int): Input image size.
            patch_size (int): Patch size.
            in_chans (int): Number of input image channels.
            embed_dim (int): Patch embedding dimension.
            depth (int): Depth of ViT.
            num_heads (int): Number of attention heads in each ViT block.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool): If True, add a learnable bias to query, key, value.
            norm_layer (nn.Module): Normalization layer.
            act_layer (nn.Module): Activation layer.
            use_abs_pos (bool): If True, use absolute positional embeddings.
            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            window_size (int): Window size for window attention blocks.
            global_attn_indexes (list): Indexes for blocks using global attention.
        """
        super().__init__()
        self.img_size = img_size

        self.patch_embed = PatchEmbed(
            kernel_size=(patch_size, patch_size),
            stride=(patch_size, patch_size),
            in_chans=in_chans,
            embed_dim=embed_dim,
        )

        # patch的位置
        self.pos_embed: Optional[nn.Parameter] = None
        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(1, img_size // patch_size, img_size // patch_size,
                            embed_dim))

        self.blocks = nn.ModuleList()
        for i in range(depth):
            block = Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                norm_layer=norm_layer,
                act_layer=act_layer,
                use_rel_pos=use_rel_pos,
                rel_pos_zero_init=rel_pos_zero_init,
                window_size=window_size if i not in global_attn_indexes else 0,
                input_size=(img_size // patch_size, img_size // patch_size),
            )
            self.blocks.append(block)

        # 实际是在patch后的向量间进行的卷积
        self.neck = nn.Sequential(
            # 不同的向量间(序列)公用了一个变换!!很关键的理解,相当于一个linear
            nn.Conv2d(
                embed_dim,
                out_chans,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
            nn.Conv2d(
                out_chans,
                out_chans,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        if self.pos_embed is not None:
            x = x + self.pos_embed

        # backbone
        for blk in self.blocks:
            x = blk(x)

        # neck
        x = self.neck(x.permute(0, 3, 1, 2))

        return x


class Block(nn.Module):
    """Transformer blocks with support of window attention and residual propagation blocks
    
    1.采用的是pre-norm的形式,也有post-norm的代码
    2.计算注意力时使用 window-partion,与之前的ViTs不同的地方!!! 增加了patch之间的交互(swinViT等等)
    3.使用decomposed relate position embedding,很关键!!

    其他的中规中矩
    """
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        act_layer: Type[nn.Module] = nn.GELU,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        window_size: int = 0,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads in each ViT block.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool): If True, add a learnable bias to query, key, value.
            norm_layer (nn.Module): Normalization layer.
            act_layer (nn.Module): Activation layer.
            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            window_size (int): Window size for window attention blocks. If it equals 0, then
                use global attention.
            input_size (tuple(int, int) or None): Input resolution for calculating the relative
                positional parameter size.
        """
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            use_rel_pos=use_rel_pos,
            rel_pos_zero_init=rel_pos_zero_init,
            input_size=input_size if window_size == 0 else
            (window_size, window_size),
        )

        self.norm2 = norm_layer(dim)
        self.mlp = MLPBlock(embedding_dim=dim,
                            mlp_dim=int(dim * mlp_ratio),
                            act=act_layer)

        self.window_size = window_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        # pre norm
        x = self.norm1(x)

        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)

        # atten
        x = self.attn(x)

        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))

        # ==============
        # mlp
        x = shortcut + x
        x = x + self.mlp(self.norm2(x))

        return x

重点(Calculate decomposed Relative Positional Embeddings)

def get_rel_pos(q_size: int, k_size: int,
                rel_pos: torch.Tensor) -> torch.Tensor:
    """
    Get relative positional embeddings according to the relative positions of
        query and key sizes.
    Args:
        q_size (int): size of query q.
        k_size (int): size of key k.
        rel_pos (Tensor): relative position embeddings (L, C).

    Returns:
        Extracted positional embeddings according to relative positions.
    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1,
                                                  max_rel_dist).permute(1, 0)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords -
                       k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(
    attn: torch.Tensor,
    q: torch.Tensor,
    rel_pos_h: torch.Tensor,
    rel_pos_w: torch.Tensor,
    q_size: Tuple[int, int],
    k_size: Tuple[int, int],
) -> torch.Tensor:
    """
    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950
    Args:
        attn (Tensor): attention map.
        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).

    Returns:
        attn (Tensor): attention map with added relative positional embeddings.
    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] +
            rel_w[:, :, :, None, :]).view(B, q_h * q_w, k_h * k_w)

    return attn

到了这里,关于[SAM 代码解读 1] class Sam(nn.Module)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包