检测和识别车牌的python的简单示例代码

这篇具有很好参考价值的文章主要介绍了检测和识别车牌的python的简单示例代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

使用OpenCV库和Tesseract OCR引擎来检测和识别车牌。 需要安装OpenCV和Tesseract库。可以使用pip安装:

pip install opencv-python
pip install pytesseract

然后用下面的代码:

import cv2
import pytesseract

# 读取图像
img = cv2.imread('car_plate.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 进行边缘检测
canny = cv2.Canny(gray, 100, 200)

# 进行车牌检测
contours, hierarchy = cv2.findContours(canny, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
    x, y, w, h = cv2.boundingRect(contour)
    if w/h > 2 and w/h < 5 and w > 80 and h > 20:
        plate = img[y:y+h, x:x+w]
        text = pytesseract.image_to_string(plate, lang='chi_sim')
        print(text)

# 显示图像
cv2.imshow('Car Plate', img)
cv2.waitKey(0)

先读取一张车牌图像,将其转换为灰度图像,用Canny算法进行边缘检测。然后,用OpenCV的findContours函数找到图像中的轮廓,根据车牌的宽高比和大小进行筛选,把符合条件的车牌图像截取出来。最后,使用Tesseract OCR引擎对截取出来的车牌图像进行识别,并打印识别结果。
用imshow函数将原始图像显示出来,等待用户关闭窗口。你可以根据需要修改代码中的参数,如调整Canny算法的参数、调整车牌的宽高比和大小限制等,来适应不同的场景和需求。文章来源地址https://www.toymoban.com/news/detail-507561.html

到了这里,关于检测和识别车牌的python的简单示例代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 车牌识别 opencv python(简单版)

    实验目标 使用形态学处理,识别图片中车牌的位置,并识别每个字符的位置 实验原理 1.车牌识别: (1)车牌的背景色是 蓝色 ,所以先提取图中蓝色的部分,转化为二值图像(蓝色部分为1,其余为0)。 (2)再检测 边缘 ,标出边缘的外接矩形,根据此矩形的 长宽比 和面积,就

    2024年02月06日
    浏览(48)
  • Python+OpenCV 简单实现人脸检测多个和人脸识别 2(附代码)

    如果dilb和face_recognition第三方包安装失败,请移步到Python 解决dilb和face_recognition第三方包安装失败_水w的博客-CSDN博客 上篇请移步到Python+dilb 简单实现人脸检测(附代码)_水w的博客-CSDN博客 本篇是在上篇的工作基础上进行的。 目录 6 人脸检测多个 7 视频检测 8 拍照保存 9 训练

    2024年01月16日
    浏览(52)
  • 利用resnet50模型实现车牌识别(Python代码,.ipynb和.py两种文件保存都有,可以使用jupyter或pycharm运行)

    1.代码的主要流程如下: 导入所需的库和模块。 对数据集进行可视化,随机选择一些图像进行展示。 加载图像数据集,并将图像和标签存储在数组中。 对标签进行独热编码。 划分训练集和测试集。 使用图像数据增强技术增加训练数据的多样性。 定义一些评估指标的函数。

    2024年02月05日
    浏览(58)
  • 使用OpenCV和Python实现缺陷检测的示例代码

    你需要使用cv2.imshow()函数来显示结果。具体来说,你可以使用以下代码来显示结果: 在上面的代码中,\\\'Result’是窗口的名称,img是要显示的图像。cv2.waitKey(0)函数会等待用户按下任意键后关闭窗口。cv2.destroyAllWindows()函数会关闭所有打开的窗口。

    2024年02月12日
    浏览(65)
  • 车牌识别算法 基于yolov5的车牌检测+crnn中文车牌识别 支持12种中文车牌识别

    1.单行蓝牌 2.单行黄牌 3.新能源车牌 4.白色警用车牌 5 教练车牌 6 武警车牌 7 双层黄牌 8 双层武警 9 使馆车牌 10 港澳牌车 11 双层农用车牌 12 民航车牌 效果如下: 车牌检测+关键点定位 1.第一步是目标检测,目标检测大家都很熟悉,常见的yolo系列,这里的话我用的是我修改后

    2024年02月04日
    浏览(86)
  • 【模式识别&目标检测】——模式识别技术&车牌检测应用

    目录 引入 一、模式识别主要方法 1、统计模式识别 2、基于隐马尔可夫模型识别 3、模糊模式识别 4、人工神经网络模式识别 总结 二、模式识别应用 1、车牌定位 2、车牌识别 参考文献: 人在观察事物或现象时,常 寻找它与其他事物或现象不同之处,并根据一定目的把相似、

    2024年02月13日
    浏览(47)
  • 【智慧交通项目实战】 《 OCR车牌检测与识别》(二):基于YOLO的车牌检测

    👨‍💻 作者简介: CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨ 公众号:GoAI的学习小屋 ,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️ 点击链接 加群。 🎉 专栏推

    2024年02月08日
    浏览(63)
  • 基于PaddleOCR的车牌检测识别

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理 专栏或我的个人主页查看 基于DETR的人脸伪装检测 YOLOv7训练自己的数据集(口罩检测) YOLOv8训练自己的数据集(足球检测) YOLOv5:TensorRT加速YOLOv5模型推理 YOLOv5:I

    2024年02月13日
    浏览(39)
  • 基于OpenCV+LPR模型端对端智能车牌识别——深度学习和目标检测算法应用(含Python+Andriod全部工程源码)+CCPD数据集

    本项目基于CCPD数据集和LPR(License Plate Recognition,车牌识别)模型,结合深度学习和目标检测等先进技术,构建了一个全面的车牌识别系统,实现了从车牌检测到字符识别的端到端解决方案。 首先,我们利用CCPD数据集,其中包含大量的中文车牌图像,用于模型的训练和验证。

    2024年02月09日
    浏览(44)
  • python中使用opencv LED屏数字识别(可用做车牌识别,一样的原理)

    应项目要求需要基于cpu的LED数字识别,为了满足需求,使用传统方法进行实验。识别传感器中显示的数字。因此使用opencv的函数做一些处理,实现功能需求。 首先读取图像,因为我没想大致得到LED屏幕的区域,因此将RGB转换为HSV空间,并分别设置H、S和V的阈值,让该区域显现

    2024年02月06日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包