【强化学习】常用算法之一 “SARSA”

这篇具有很好参考价值的文章主要介绍了【强化学习】常用算法之一 “SARSA”。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【强化学习】常用算法之一 “SARSA”

 文章来源地址https://www.toymoban.com/news/detail-508046.html

作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?type=blog个人简介:打工人。

持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com 

        强化学习是一种机器学习方法,通过与环境不断交互来学习最优行为策略。SARSA(State-action-reward-state-action)算法是强化学习中的经典算法之一,用于求解马尔可夫决策过程(Markov Decision Process, MDP)中的最优策略。本文将详细介绍SARSA算法的发展历程、算法原理、功能以及使用方法,并附带示例代码和运行结果。

本文将详细讲解强化学习常用算法之一“SARSA”


【强化学习】常用算法之一 “SARSA”

 

目录

一、简介

二、发展史

三、算法公式

1. SARSA算法公式

2. SARSA算法原理

四、算法功能

五、示例代码

六、总结


一、简介

        强化学习是一种通过学习与环境交互来最大化累积奖励的方法。在强化学习中,一个智能体在特定环境中根据当前状态选择一个动作,执行该动作后,环境将转移到新的状态,并且智能体将获得奖励。强化学习的目标是通过学习,使智能体能够选择一系列能够获取最大累积奖励的动作序列,即找到最优策略。SARSA算法是一种基于状态-动作值的强化学习算法,用来学习最优策略。

二、发展史

        SARSA算法最早由Richard Sutton和Andrew Barto在他们的著作《强化学习导论》中提出。SARSA是Q-learning算法的一种特例,也是一种基于值函数的算法。

        Q-learning算法是一种基于状态-动作值的强化学习算法,它通过维护一个Q值表(存储每个状态-动作对的状态-动作值)来学习最优策略。然而,Q-learning算法必须对Q值表进行离散化处理,因此只适用于状态空间和动作空间较小且离散的问题。为了解决这个问题,Richard Sutton等人提出了SARSA算法。

        SARSA算法是一种基于值函数和策略的算法,它不需要对状态空间和动作空间进行离散化处理,适用于连续状态和动作的问题。该算法使用一个Q值函数和一个策略函数来近似最优策略。

三、算法公式

1. SARSA算法公式

        SARSA算法的更新公式如下:

【强化学习】常用算法之一 “SARSA”

        其中,Q(s, a)表示在状态s下选择动作a的状态-动作值,r表示执行动作a后获得的即时奖励,α表示学习率,γ表示折扣因子,s’表示转移到的新状态,a’表示在新状态s’下选择的动作。 

2. SARSA算法原理

        SARSA算法的核心思想是通过不断更新状态-动作值函数Q(s, a)来学习最优策略。该算法按照以下步骤进行:

  • 初始化状态-动作值函数Q(s, a)和策略函数π(a|s)的值。
  • 在每个时间步t中,依据当前状态s和策略函数π选择一个动作a。
  • 执行动作a,观察获得的即时奖励r和新状态s’。
  • 根据新状态s’和策略函数π选择一个新动作a’。
  • 更新状态-动作值函数Q(s, a)的值,使用SARSA更新公式。
  • 将新状态s’和新动作a’作为下一步的状态s和动作a。
  • 重复上述步骤,直到达到终止条件。

        通过不断迭代更新状态-动作值函数Q(s, a),SARSA算法可以逐步逼近最优状态-动作值函数,从而得到最优策略。

四、算法功能

        SARSA算法具有以下功能:

  1. 模型无关性:SARSA算法不需要对环境模型进行假设,只通过与环境交互来学习最优策略。
  2. 收敛性:在一定条件下,SARSA算法保证会收敛到最优策略。
  3. 适用性:SARSA算法适用于状态空间和动作空间较大且连续的问题,而不需要对状态空间和动作空间进行离散化处理。

五、示例代码

import numpy as np

# 定义迷宫环境
maze = np.array([
    [0, 0, 0, 0],
    [0, -1, 0, -1],
    [0, 0, 0, -1],
    [-1, 0, 0, 1]
])

# 定义起始状态和终止状态
start_state = (3, 0)
goal_state = (3, 3)

# 定义动作空间
actions = [(0, 1), (0, -1), (-1, 0), (1, 0)]

# 初始化状态-动作值函数
Q = np.zeros((4, 4, 4))

# 定义参数
alpha = 0.1
gamma = 0.9
epsilon = 0.1
max_episodes = 100

# SARSA算法 
for episode in range(max_episodes):
    state = start_state
    action = np.random.choice(range(4)) if np.random.rand() < epsilon else np.argmax(Q[state])

    while state != goal_state:
        # next_state = (state[0] + actions[action][0], state[1] + actions[action][1])
        a = state[0] + actions[action][0]
        b = state[1] + actions[action][1]
        if a > 3:
            a-=1
        elif b > 3:
            b-=1
        elif a < -4:
            a+= 1
        elif b < -4:
            b+= 1
        next_state = (a,b)
        reward = maze[next_state]
        next_action = np.random.choice(range(4)) if np.random.rand() < epsilon else np.argmax(Q[next_state])
        Q[state][action] += alpha * (reward + gamma * Q[next_state][next_action] - Q[state][action])

        state = next_state
        action = next_action

# 输出结果
for i in range(4):
    for j in range(4):
        print("State:", (i, j))
        print("Up:", Q[i][j][0])
        print("Down:", Q[i][j][1])
        print("Left:", Q[i][j][2])
        print("Right:", Q[i][j][3])
        print()

        运行结果如下: 

State: (0, 0)
Up: -0.008042294056935573
Down: -0.007868742418369764
Left: -0.016173595452674966
Right: 0.006662566560762523

State: (0, 1)
Up: 0.048576025675988774
Down: -0.0035842473161881465
Left: 0.024420015715567546
Right: -0.46168987981312615

State: (0, 2)
Up: 0.04523751845081987
Down: 0.04266319340558091
Left: 0.044949583791193154
Right: 0.026234839551098416

State: (0, 3)
Up: 0.01629652821649763
Down: 0.050272192325180515
Left: -0.009916869922464355
Right: -0.4681667868865369

State: (1, 0)
Up: -0.09991342319696966
Down: 0.0
Left: 0.0
Right: 0.036699099068340166

State: (1, 1)
Up: 0.008563965102313987
Down: 0.0
Left: 0.0
Right: 0.3883250678150607

State: (1, 2)
Up: -0.3435187267522706
Down: -0.2554776873673874
Left: 0.05651543121932354
Right: 0.004593450910446022

State: (1, 3)
Up: -0.1
Down: -0.013616634831997914
Left: 0.01298827764814053
Right: 0.0

State: (2, 0)
Up: 0.28092113053540924
Down: 0.0
Left: 0.0024286388798406364
Right: 0.06302299434701504

State: (2, 1)
Up: 0.0
Down: 0.0
Left: -0.16509175606504775
Right: 1.9146361697676122

State: (2, 2)
Up: -0.1
Down: 0.0
Left: 0.03399106390140035
Right: 0.0

State: (2, 3)
Up: -0.3438668479533914
Down: 0.004696957810272524
Left: -0.19
Right: 0.0

State: (3, 0)
Up: 3.3060693607932445
Down: 0.8893977121867367
Left: 0.0
Right: 0.13715553550041798

State: (3, 1)
Up: 4.825854511712306
Down: -0.03438123168566812
Left: 0.10867882029322147
Right: 1.0015572397722665

State: (3, 2)
Up: 5.875704328143301
Down: 0.9315770230698863
Left: 0.0006851481810742227
Right: 0.47794799892127526

State: (3, 3)
Up: 5.4028951599661275
Down: 2.6989177956329757
Left: -0.6454474033238188
Right: 0.018474082554518417

        通过运行示例代码,我们可以得到每个状态下的最优动作及对应的状态-动作值。

六、总结

        本文详细介绍了强化学习中的SARSA算法,包括其发展历程、算法原理、功能以及使用方法,并给出了求解迷宫问题的示例代码。SARSA算法能够实现模型无关性和收敛性,适用于状态空间和动作空间较大且连续的问题。通过对状态-动作值函数的迭代更新,SARSA算法可以逐步逼近最优策略,并通过与环境交互来学习最优行为策略。

【强化学习】常用算法之一 “SARSA”

 

 

到了这里,关于【强化学习】常用算法之一 “SARSA”的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C#常用的加密算法之一 MD5

    MD5加密概述,原理及实现 C#常用的加密算法:MD5、Base64、SHA1、SHA256、HmacSHA256、DES、AES、RSA MD5消息摘要算法,属Hash算法一类。MD5算法对输入任意长度的消息进行运行,产生一个128位的消息摘要(32位的数字字母混合码)。 不可逆,相同数据的MD5值肯定一样,不同数据的MD5值不一

    2024年02月10日
    浏览(50)
  • 【强化学习】——Q-learning算法为例入门Pytorch强化学习

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机研究生在读,研究方向复杂网络和数据挖掘,阿里云专家博主,华为云云享专家,CSDN专家博主、人工智能领域优质创作者,安徽省优秀毕业生 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话

    2024年02月10日
    浏览(71)
  • 【机器学习】十大算法之一 “逻辑回归”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月10日
    浏览(38)
  • 【机器学习】十大算法之一 “线性回归”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月09日
    浏览(36)
  • 【机器学习】十大算法之一 “PCA”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月11日
    浏览(30)
  • 【机器学习】十大算法之一 “决策树”

    作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分享

    2024年02月11日
    浏览(41)
  • 强化学习专题:回合更新算法

    游戏开始 玩家收到两张明牌,荷官发给自己一张明牌和一张暗牌 根据自己手中的牌和荷官的明牌,玩家需要决定是否要牌(Hit)或停牌(Stand) 选择要牌,荷官发一张额外的牌 如果玩家的牌总点数超过21点,即爆牌(Bust),该玩家输。 否则可以继续要牌直到停止 选择停牌

    2024年02月11日
    浏览(41)
  • 【机器学习】强化学习(三)蒙特卡洛算法

    策略迭代算法和价值迭代算法为什么可以得到理论上的最优解,在实际问题中使用价值有限? 无模型算法 三、蒙特卡洛算法 蒙特卡洛(Monte Carlo)方法是一种基于样本的强化学习算法,它通过执行和学习代理(也就是我们编程的AI)环境交互的样本路径来学习。它不需要初始知

    2024年01月19日
    浏览(53)
  • python算法中的深度学习算法之强化学习(详解)

    目录 学习目标: 学习内容: 强化学习 Ⅰ. 环境建模 Ⅱ . Markov决策过程

    2024年02月01日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包