几何概率、条件概率及全概率公式作业
-
有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求第一次取出的零件是一等品的概率_____(结果小数点后保留1位)
【正确答案:0.5 或1/2】
解析:
设A₁,A₂分别表示“挑出第一箱、第二箱”,B₁,B₃分别表示“第一次、第二次取出的是一等品”,所求概率为 P ( B 1 ) = P ( A 1 ) P ( B 1 ∣ A 1 ) + P ( A 2 ) P ( B 1 ∣ A 2 ) = 1 2 × 20 50 + 1 2 × 18 30 = 0.5 ; P(B_{1})=P(A_{1})P(B_{1}|A_{1})+P(A_{2})P(B_{1}|A_{2})= \frac {1}{2} \times \frac {20}{50}+ \frac {1}{2} \times \frac {18}{30}=0.5; P(B1)=P(A1)P(B1∣A1)+P(A2)P(B1∣A2)=21×5020+21×3018=0.5; -
甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是______(结果用小数表示,小数点后保留5位);
【正确答案:0.87934或1013/1152】
解析:
设甲乙两艘轮船到达码头的时间分别为x和y小时,
有Ω={(x,y)|0≤x≤24,0≤y≤24}, 得 m(Ω)=24²=576,
事件A=“它们中任何一艘都不需要等候码头空出”,
若甲先到, 有x+1≤y≤24;若乙先到,有y+2≤x≤24;
即A={(x,y)|0≤x≤24,0≤y≤24,x+1≤y≤24或y+2≤x≤24},
得 m ( A ) = 1 2 × 2 3 2 + 1 2 × 2 2 2 = 1013 2 m(A)= \frac {1}{2} \times 23^{2}+ \frac {1}{2} \times 22^{2}= \frac {1013}{2} m(A)=21×232+21×222=21013,
故所求概率为 P ( A ) = m ( A ) m ( Ω ) = 1013 1152 P(A)= \frac {m(A)}{m( \Omega )}= \frac {1013}{1152} P(A)=m(Ω)m(A)=11521013 -
设一批产品中一、二、三等品各占60%,35%,5%. 从中任意取出一件,结果不是三等品,求取到的是一等品的概率_______(结果用小数表示,要求小数点后保留5位)
【正确答案:12/19 或0.63158】
解析:
设A,B,C分别表示“取出一、二、三等品”,有 P ( A ) = 0.6 , P ( B ) = 0.35 , P ( C ) = 0.05 P(A)=0.6,P(B)=0.35, P(C)=0.05 P(A)=0.6,P(B)=0.35,P(C)=0.05,故所求概率为
P ( A ∣ C ‾ ) = P ( A C ‾ ) P ( C ‾ ) = P ( A ) 1 − P ( C ) = 0.6 1 − 0.05 = 12 19 P(A| \overline{C})= \frac {P(A \overline{C})}{P(\overline{C})}= \frac {P(A)}{1-P(C)}= \frac {0.6}{1-0.05}= \frac {12}{19} P(A∣C)=P(C)P(AC)=1−P(C)P(A)=1−0.050.6=1912 -
已知 P(A)=1/3, P(B|A)=1/4, P(A|B)=1/6, 求P(A∪B)=_____(结果小数点后保留2位)
【正确答案: 3/4或0.75】
解析:
因 P ( A B ) = P ( A ) P ( B ∣ A ) = 1 3 × 1 4 = 1 12 , P ( B ) = P ( A B ) P ( A ∣ B ) = 1 / 12 1 / 6 = 1 2 , 故 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) = 1 3 + 1 2 − 1 12 = 3 4 P(AB)=P(A)P(B|A)= \frac {1}{3} \times \frac {1}{4}= \frac {1}{12},P(B)= \frac {P(AB)}{P(A|B)}= \frac {1/12}{1/6}= \frac {1}{2},故P(A \cup B)=P(A)+P(B)-P(AB)= \frac {1}{3}+ \frac {1}{2}- \frac {1}{12}= \frac {3}{4} P(AB)=P(A)P(B∣A)=31×41=121,P(B)=P(A∣B)P(AB)=1/61/12=21,故P(A∪B)=P(A)+P(B)−P(AB)=31+21−121=43 -
已知 P ( A ˉ ) = 0.3 , P ( B ) = 0.4 , P ( A B ˉ ) = 0.5 P(\bar{A})=0.3,P(B)=0.4,P(A \bar{B})=0.5 P(Aˉ)=0.3,P(B)=0.4,P(ABˉ)=0.5,求 P ( B ∣ A ∪ B ‾ ) P(B|A \cup \overline {B}) P(B∣A∪B)
=_____(结果小数点后保留2位)
【正确答案:0.25 或1/4】
解析:
因 P ( A B ) = P ( A ) − P ( A B ‾ ) = 1 − P ( A ‾ ) − P ( A B ‾ ) = 1 − 0.3 − 0.5 = 0.2 , 且 P ( A ∪ B ‾ ) = P ( A ) + P ( B ‾ ) − P ( A B ‾ ) = 1 − P ( A ‾ ) + 1 − P ( B ) − P ( A B ‾ ) = 1 − 0.3 + 1 − 0.4 − 0.5 = 0.8 , 故 P ( B ∣ A ∪ B ‾ ) = P ( B ( A ∪ B ‾ ) ) P ( A ∪ B ‾ ) = P ( A B ) P ( A ∪ B ‾ ) = 0.2 0.8 = 0.25 P(AB)=P(A)-P(A \overline {B})=1-P( \overline {A})-P(A \overline {B})=1-0.3-0.5=0.2,且P(A \cup \overline {B})=P(A)+P( \overline {B})-P(A \overline {B})=1-P( \overline {A})+1-P(B)-P(A \overline {B})=1-0.3+1-0.4-0.5=0.8,故P(B|A \cup \overline {B})= \frac {P(B(A \cup \overline {B}))}{P(A \cup \overline {B})}= \frac {P(AB)}{P(A \cup \overline {B})}= \frac{0.2}{0.8}=0.25 P(AB)=P(A)−P(AB)=1−P(A)−P(AB)=1−0.3−0.5=0.2,且P(A∪B)=P(A)+P(B)−P(AB)=1−P(A)+1−P(B)−P(AB)=1−0.3+1−0.4−0.5=0.8,故P(B∣A∪B)=P(A∪B)P(B(A∪B))=P(A∪B)P(AB)=0.80.2=0.25 -
设A,B为两事件, P(A)=P(B)=1/3, P(A|B)=1/6,求 P ( A ‾ ∣ B ‾ ) P( \overline {A}| \overline {B}) P(A∣B)=_____(结果小数点后保留3位)
【正确答案:0.583或7/12】
解析:
因 P ( A B ) = P ( B ) P ( A ∣ B ) = 1 3 × 1 6 = 1 18 , 有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) = 1 3 + 1 3 − 1 18 = 11 18 , 则 P ( A B ‾ ) = P ( A ∪ B ‾ ) = 1 − P ( A ∪ B ) = 1 − 11 18 = 7 18 , 且 P ( B ‾ ) = 1 − P ( B ) = 1 − 1 3 = 2 3 , 故 P ( A ‾ ∣ B ‾ ) = P ( A B ‾ ) P ( B ‾ ) = 7 / 18 2 / 3 = 7 12 P(AB)=P(B)P(A|B)= \frac {1}{3} \times \frac {1}{6}= \frac {1}{18},有P(A \cup B)=P(A)+P(B)-P(AB)= \frac {1}{3}+ \frac {1}{3}- \frac {1}{18}= \frac {11}{18},则P( \overline {AB})=P( \overline {A \cup B})=1-P(A \cup B)=1- \frac {11}{18}= \frac {7}{18},且P( \overline {B})=1-P(B)=1- \frac {1}{3}= \frac {2}{3},故P( \overline {A}| \overline {B})= \frac {P( \overline {AB})}{P( \overline {B})}= \frac {7/18}{2/3}= \frac {7}{12} P(AB)=P(B)P(A∣B)=31×61=181,有P(A∪B)=P(A)+P(B)−P(AB)=31+31−181=1811,则P(AB)=P(A∪B)=1−P(A∪B)=1−1811=187,且P(B)=1−P(B)=1−31=32,故P(A∣B)=P(B)P(AB)=2/37/18=127 -
一盘晶体管有 8 只合格品,2只不合格品,从中不返回地一只一只取出,试求第二次取出的是合格品的概率_____(结果保留小数点后1位)
【正确答案:0.8或4/5或8/10】
解析:
设A₁,A₂分别表示 “第一次取出的是合格品、不合格品”,B表示“第二次取出的是合格品”,故所求概率为 P ( B ) − P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 8 10 × 7 9 + 2 10 × 8 9 − 72 90 = 0.8 P(B)-P(A_{1})P(B|A_{1})+P(A_{2})P(B|A_{2})=\frac {8}{10} \times \frac {7}{9}+ \frac {2}{10} \times \frac {8}{9}- \frac {72}{90}=0.8 P(B)−P(A1)P(B∣A1)+P(A2)P(B∣A2)=108×97+102×98−9072=0.8 -
钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是50%、30%和20%,而掉在上述三处地方被找到的概率分别是0.8、0.3和0.1. 试求找到钥匙的概率______;(结果小数点后保留2位)
【正确答案:0.51或51/100】
解析:
设A₁,A₂,A₃分别表示“钥匙掉在宿舍里、掉在教室里、掉在路上”,B表示 “找到钥匙”,故所求概率为 P(B)=P(A₁)P(B|A₁)+P(A₂)P(B|A₂)+P(A₃)P(B|A₃)=0.5×0.8+0.3×0.3+0.2×0.1=0.51文章来源:https://www.toymoban.com/news/detail-508171.html -
两台车床加工同样的零件,第一台出现不合格品的概率是 0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.
求任取一个零件是合格品的概率______; (结果小数点后保留2位)
【正确答案:0.96 或24/25】
解析:
设A₁,A₂分别表示“取出的是第一台、第二台车床加工的零件”,B表示“取出的是合格品”,
所求概率为 P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 2 3 × 0.97 + 1 3 × 0.94 = 0.96 P(B)=P(A_{1})P(B|A_{1})+P(A_{2})P(B|A_{2})= \frac {2}{3} \times 0.97+ \frac {1}{3} \times 0.94=0.96 P(B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)=32×0.97+31×0.94=0.96文章来源地址https://www.toymoban.com/news/detail-508171.html
附:系列文章
序号 | 概率论 | 直达链接 |
---|---|---|
1 | 几何概率、条件概率及全概率公式作业 | https://want595.blog.csdn.net/article/details/131453732 |
2 | 条件概率与独立性题目 | https://want595.blog.csdn.net/article/details/131445673 |
3 | 全概率与贝叶斯公式作业 | https://want595.blog.csdn.net/article/details/131453510 |
4 | 贝叶斯公式的作业 | https://want595.blog.csdn.net/article/details/131454384 |
5 | 独立性作业(一) | https://want595.blog.csdn.net/article/details/131473856 |
6 | 独立性作业(二) | https://want595.blog.csdn.net/article/details/131474088 |
7 | 随机变量函数的分布 | https://want595.blog.csdn.net/article/details/131487458 |
8 | 随机变量的方差与标准差作业 | https://want595.blog.csdn.net/article/details/131487036 |
9 | 连续型随机变量的分布函数及数学期望(一) | https://want595.blog.csdn.net/article/details/131482805 |
10 | 连续型随机变量的分布函数及数学期望(二) | https://want595.blog.csdn.net/article/details/131482984 |
11 | 常用的离散分布 | https://want595.blog.csdn.net/article/details/131487115 |
12 | 常用连续分布(一) | https://want595.blog.csdn.net/article/details/131487232 |
13 | 常用连续分布(二) | https://want595.blog.csdn.net/article/details/131487306 |
14 | 多维随机变量函数的分布(一) | https://want595.blog.csdn.net/article/details/131488172 |
15 | 多维随机变量函数的分布(二) | https://want595.blog.csdn.net/article/details/131488282 |
16 | 多维随机变量函数的分布(三) | https://want595.blog.csdn.net/article/details/131488391 |
17 | 多维随机变量及其联合分布作业 | https://want595.blog.csdn.net/article/details/131487796 |
18 | 边际分布的作业 | https://want595.blog.csdn.net/article/details/131487983 |
19 | 大数定律 | https://want595.blog.csdn.net/article/details/131006831 |
20 | 中心极限定理(一) | https://want595.blog.csdn.net/article/details/131020595 |
21 | 中心极限定理(二) | https://want595.blog.csdn.net/article/details/131047033 |
到了这里,关于【概率论】几何概率、条件概率及全概率公式作业的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!