YOLOv5-7.0添加BottleNet transformer

这篇具有很好参考价值的文章主要介绍了YOLOv5-7.0添加BottleNet transformer。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

YOLOv5主干特征提取网络为CNN网络,CNN具有平移不变性和局部性,缺乏全局建模长距离建模的能力,引入自然语言领域的Transformer可以形成CNN+TransFormer架构,充分结合两者的优点,提高目标检测效果。

1. BoTNet

论文地址:https://arxiv.org/abs/2101.11605
BoTNet是一种简单但功能强大的主干网络,该架构将注意力模块纳入了包括图像分类,目标检测,实例分割等多种计算机视觉任务。通过仅将ResNet的最后三个的卷积层替换成MHSA层,并不进行其他改变,在墓边检测方面显著改善了极限,同时减少了参数两,从而使得延迟最小化。
YOLOv5-7.0添加BottleNet transformerTransformer中的MHSA和BoTNet中的MHSA的区别:文章来源地址https://www.toymoban.com/news/detail-508482.html

  • 归一化,Transformer使用 Layer Normalization,而BoTNet使用 Batch Normalization。
  • 非线性激活,Transformer仅仅使用一个非线性激活在FPN block模块中,BoTNet使用了3个非线性激活。
  • 输出投影,Transformer中的MHSA包含一个输出投影,BoTNet则没有。
  • 优化器,Transformer使用Adam优化器训练,BoTNet使用sgd+ momentum
    YOLOv5-7.0添加BottleNet transformer

2.YOLOv5融合Bottleneck Transformers

2.1 修改common.py,添加CTR3

class MHSA(nn.Module):
    def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False):
        super(MHSA, self).__init__()

        self.heads = heads
        self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.pos = pos_emb
        if self.pos:
            self.rel_h = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, 1, int(height)]), requires_grad=True)
            self.rel_w = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, int(width), 1]), requires_grad=True)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        n_batch, C, width, height = x.size()
        q = self.query(x).view(n_batch, self.heads, C // self.heads, -1)
        k = self.key(x).view(n_batch, self.heads, C // self.heads, -1)
        v = self.value(x).view(n_batch, self.heads, C // self.heads, -1)
        # print('q shape:{},k shape:{},v shape:{}'.format(q.shape,k.shape,v.shape))  #1,4,64,256
        content_content = torch.matmul(q.permute(0, 1, 3, 2), k)  # 1,C,h*w,h*w
        # print("qkT=",content_content.shape)
        c1, c2, c3, c4 = content_content.size()
        if self.pos:
            # print("old content_content shape",content_content.shape) #1,4,256,256
            content_position = (self.rel_h + self.rel_w).view(1, self.heads, C // self.heads, -1).permute(0, 1, 3,
                                                                                                          2)  # 1,4,1024,64

            content_position = torch.matmul(content_position, q)  # ([1, 4, 1024, 256])
            content_position = content_position if (
                        content_content.shape == content_position.shape) else content_position[:, :, :c3, ]
            assert (content_content.shape == content_position.shape)
            # print('new pos222-> shape:',content_position.shape)
            # print('new content222-> shape:',content_content.shape)
            energy = content_content + content_position
        else:
            energy = content_content
        attention = self.softmax(energy)
        out = torch.matmul(v, attention.permute(0, 1, 3, 2))  # 1,4,256,64
        out = out.view(n_batch, C, width, height)
        return out


class BottleneckTransformer(nn.Module):
    # Transformer bottleneck
    # expansion = 1

    def __init__(self, c1, c2, stride=1, heads=4, mhsa=True, resolution=None, expansion=1):
        super(BottleneckTransformer, self).__init__()
        c_ = int(c2 * expansion)
        self.cv1 = Conv(c1, c_, 1, 1)
        # self.bn1 = nn.BatchNorm2d(c2)
        if not mhsa:
            self.cv2 = Conv(c_, c2, 3, 1)
        else:
            self.cv2 = nn.ModuleList()
            self.cv2.append(MHSA(c2, width=int(resolution[0]), height=int(resolution[1]), heads=heads))
            if stride == 2:
                self.cv2.append(nn.AvgPool2d(2, 2))
            self.cv2 = nn.Sequential(*self.cv2)
        # self.bn2 = nn.BatchNorm2d(planes)
        # self.cv3 = nn.Conv2d(planes, expansion * planes, kernel_size=1, bias=False)
        # self.bn3 = nn.BatchNorm2d(expansion * planes)
        # self.shortcut = nn.Sequential()
        self.shortcut = c1 == c2
        if stride != 1 or c1 != expansion * c2:
            self.shortcut = nn.Sequential(
                nn.Conv2d(c1, expansion * c2, kernel_size=1, stride=stride),
                nn.BatchNorm2d(expansion * c2)
            )
        self.fc1 = nn.Linear(c2, c2)

    def forward(self, x):
        # print("transforme  input bottleck shape:",x.shape)
        # out = F.relu(self.bn1(self.conv1(x)))
        # out = F.relu(self.bn2(self.conv2(out)))
        # out = self.bn3(self.conv3(out))
        # out += self.shortcut(x)
        # out = F.relu(out)
        out = x + self.cv2(self.cv1(x)) if self.shortcut else self.cv2(self.cv1(x))
        return out


class CTR3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, e=0.5, e2=1, w=20, h=20):  # ch_in, ch_out, number, , expansion,w,h
        super(CTR3, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(
            *[BottleneckTransformer(c_, c_, stride=1, heads=4, mhsa=True, resolution=(w, h), expansion=e2) for _ in
              range(n)])
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        # print("CTR3-INPUT:",x.shape)
        # return self.cv3
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

2.2修改yolo.py,在parse_model注册CTR3

 if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, CTR3,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:

2.3 修改yaml文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 8  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v7.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, CTR3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v7.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

#   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
   [ [ 17, 20, 23 ], 1, Detect, [ nc, anchors ] ],         # Detect(P3, P4, P5)

  ]

到了这里,关于YOLOv5-7.0添加BottleNet transformer的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5系列全新升级——yolov5-v7.0实时实例分割全面集成

    自从YOLOv5诞生依赖,社区就很活动,官方的更新频度也很高,检测系列一路迭代升级,集成融合了各种新颖的技术和tricks,目前最新已经更新到了v6.1版本,在我之前的博客里面也有详细教程讲解,感兴趣的话可以自行移步,文章如下: 《基于自建数据集【海底生物检测】使

    2024年02月01日
    浏览(54)
  • 【目标检测】YOLOv5-7.0:加入实例分割

    前段时间,YOLOv5推出7.0版本,主要更新点是在目标检测的同时引入了实例分割。 目前,YOLOv5团队已经转向了YOLOv8的更新,因此,7.0版本大概率是YOLOv5的最终稳定版。 官方公告中给出了YOLOv5-7.0的更新要点: 推出了基于coco-seg的实例分割预训练模型 支持Paddle Paddle模型导出 自动

    2024年02月11日
    浏览(37)
  • YOLOv5-7.0训练中文标签的数据集

    链接:https://pan.baidu.com/s/1KSROxTwyYnNoNxI5Tk13Dg  提取码:8888 (1)将metric.py中: 将 改为:    Windows11:  Ubuntu20.04:  (2)将general.py中: 将 改为:  Windows11:    Ubuntu20.04:        (3)将plots.py 中: 在头文件处加上: Windows11:    Ubuntu20.04:     在plots.py找到class  Annotator:    将 改

    2024年02月02日
    浏览(38)
  • yolov5-7.0训练自己的VOC数据集

    这个笔记可能只适用于7.0版本的,写这个笔记主要是给工作室伙伴参考的,大佬请绕行 有错误之处欢迎指出 yolov5的GitHub仓库地址:Release v7.0 - YOLOv5 SOTA Realtime Instance Segmentation · ultralytics/yolov5 (github.com) 需要下载源码和预训练模型 将源码解压,在其文件夹里面新建一个weights文

    2024年02月12日
    浏览(55)
  • yolov5-v7.0实例分割快速体验

    🚀 yolov5-v7.0 版本正式发布,本次更新的 v7.0 则是全面的大版本升级,最主要的功能就是全面集成支持了实例分割,yolov5已经集成检测、分类、分割任务。 前面几篇文章已经介绍过关于Yolov5的一些方面 yolov5目标检测:https://blog.csdn.net/qq_45066628/article/details/129470290?spm=1001.2014.30

    2024年02月09日
    浏览(35)
  • YOLOv5-7.0-seg+YOLOv8-seg自定义数据集训练

    下载源码   https://github.com/ultralytics/yolov5.git 参考链接   yolov5-实例分割 1.如何使用yolov5实现实例分割,并训练自己的数据集_哔哩哔哩_bilibili 目录: - datasets     - JPEImages #存放图片和标注后的json文件以及转换后的txt文件     - classes-4 #存放切分好的数据集         - images    

    2024年02月01日
    浏览(56)
  • YOLOv5-7.0解决报错ImportError: Bad git executable.

    最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。 ImportE

    2024年03月16日
    浏览(90)
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏或我的个人主页查看 YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制 YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层 YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU YOLOv7训练自己的数据集(口罩检测)

    2024年02月15日
    浏览(51)
  • 【Yolov5】Yolov5添加ASFF, 网络改进优化

    🚀🚀🚀 Yolov5添加ASFF 🚀🚀🚀 Yolov5是单阶段目标检测算法的一种,网上有很多改进其性能的方法,添加ASFF模块就是其中一种,但是ASFF本身是用于Yolov3的,在v5中无法直接应用,且网上许多博客都是介绍这个模块的原理,没有直接可以应用的代码程序,我这里提供一种方案

    2023年04月08日
    浏览(47)
  • 目标检测YOLOV5 添加计数功能

    YOLOV5预测完图片想显示个数怎么办呢? 一行代码轻松解决!!!! 原来的Detect 没有计数功能 只需在源码 上加上下面这一段代码即可: 这样就可以加上计数功能了!!!!  

    2024年02月16日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包