什么是hive的高级分组聚合,它的用法和注意事项以及性能分析

这篇具有很好参考价值的文章主要介绍了什么是hive的高级分组聚合,它的用法和注意事项以及性能分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

hive的高级分组聚合是指在聚合时使用GROUPING SETS、CUBE和ROLLUP的分组聚合。

高级分组聚合在很多数据库类SQL中都有出现,并非hive独有,这里只说明hive中的情况。

使用高级分组聚合不仅可以简化SQL语句,而且通常情况下会提升SQL语句的性能。

1.Grouping sets 的使用

示例:

-- 使用方式
select a,b,sum(c) from tbl group by a,b grouping sets(a,b)

Grouping sets的子句允许在一个group by 语句中,指定多个分组聚合列。所有含有Grouping sets 的子句都可以用union连接的多个group by 查询逻辑来表示。

如下一些常见的等价替换示例:

-- 语句1
select a, b sum(c) from tbl group by a,b grouping sets((a,b))
-- 相当于 
select a,b,sum(c) from tbl group by a,b

-- 语句2
select a,b,sum(c) from tbl group by a,b grouping sets((a,b),a)
-- 相当于
select a,b,sum(c) from tbl group by a,b
union
select a,null ,sum(c) from tbl group by a

-- 语句3
select a,b,sum(c) from tbl group by a,b grouping sets(a,b)
-- 相当于
select a,null,sum(c) from tbl group by a
union
select null ,b,sum(c) from tbl group by b

-- 语句4
select a,b,sum(c) from tbl group by a,b grouping sets((a,b),a,b,())
-- 相当于
select a,b,sum(c) from tbl group by a,b
union
select a,null,sum(c) from tbl group by a
union
select null,b,sum(c) from tbl group by b
union
select null,null,sum(c) from tbl

可以看到通过等价替换的改写之后,语句会变得简洁,性能我们之后分析。

2.cube 和rollup的使用

示例:

-- cube使用示例
select a,b,c,count(1) from tbl group by a,b,c with cube
-- rollup使用示例
select a,b,c,count(1) from tbl group by a,b,c with rollup

用法说明:

以上两个高级分组函数都可以在一个group by 语句中完成多个分组聚合,它们都可以用grouping sets来等价替换。

  • cube 会计算所有group by 列的所有组合
-- cube语句
select a,b,c,count(1) from tbl group by a,b,c with cube
-- 相当于
select a,b,c count(1) from tbl group by a,b,c
grouping sets((a,b,c),(a,b),(b,c),(a,c),(a),(b),(c),())
  • rollup 会按照group by 指定的列从左到右进行分组聚合
-- rollup语句 滚动式聚合
select a,b,c,count(1) from tbl group by a,b,c with rollup
-- 相当于
select a,b,c,count(1) from tbl group by a,b,c s
grouping sets((a,b,c),(a,b),(a),())

3.使用高级分组聚合函数的性能分析

我们可以通过执行计划的执行来分析高级分组聚合SQL语句的执行过程,比对其优化的节点。

例1 含grouping sets关键词的SQL执行案例。

set hive.map.aggr=true;
explain
-- 小于30岁人群的不同性别平均年龄
select gender,avg(age) as avg_age from temp.user_info_all where ymd = '20230505'
and age < 30 
group by gender;

-- 将以上语句改为grouping sets关键词执行语句
set hive.map.aggr=true;
explain
select gender,avg(age) as num from temp.user_info_all 
where ymd = '20230505'
and age < 30 
group by gender grouping sets((gender));

查看其执行计划:

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: user_info_all
            Statistics: Num rows: 32634295 Data size: 783223080 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (age < 30) (type: boolean)
              Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: avg(age)
                keys: gender (type: int), 0 (type: int)
                mode: hash
                outputColumnNames: _col0, _col1, _col2
                Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: int), _col1 (type: int)
                  sort order: ++
                  Map-reduce partition columns: _col0 (type: int), _col1 (type: int)
                  Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col2 (type: struct<count:bigint,sum:double,input:bigint>)
      Reduce Operator Tree:
        Group By Operator
          aggregations: avg(VALUE._col0)
          keys: KEY._col0 (type: int), KEY._col1 (type: int)
          mode: mergepartial
          outputColumnNames: _col0, _col2
          Statistics: Num rows: 5439049 Data size: 130537176 Basic stats: COMPLETE Column stats: NONE
          pruneGroupingSetId: true
          Select Operator
            expressions: _col0 (type: int), _col2 (type: double)
            outputColumnNames: _col0, _col1
            Statistics: Num rows: 5439049 Data size: 130537176 Basic stats: COMPLETE Column stats: NONE
            File Output Operator
              compressed: true
              Statistics: Num rows: 5439049 Data size: 130537176 Basic stats: COMPLETE Column stats: NONE
              table:
                  input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                  serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

对以上内容进行关键字解读:

map阶段:

  • Group By Operator :Map端开启聚合操作
  • aggregations:分组聚合的算法,该案例采取avg(age)
  • keys: 这里是分组列+ 一个固定列 0
  • mode:Hash
  • outputColumnNames:最终输出三列。_col0, _col1, _col2
  • Reduce Output Operator:该阶段为map阶段聚合后的操作
  • key expressions:map端最终输出的key,该例为gender和0两列。
  • sort order:输出两列都正序排序
  • Map-reduce partition columns:表示Map阶段数据输出的分区列,该案例为gender和0两列进行分区。
  • value expressions:map端最终输出value,为一个结构体。

Reduce阶段:

  • Group By Operator:reduce阶段的分组聚合操作。
  • aggregations: 分组聚合算法,avg(VALUE._col0)表示对map阶段输出的 value expressions的 _col0取平均值。
  • keys:指定分组聚合的key,有两列。为map阶段输出的key。
  • mode: mergepartial
  • outputColumnNames: 表示最终输出的列,该例为gender和num。
  • pruneGroupingSetId: 表示是否对最终输出的grouping id进行修剪,如果为true,则表示将keys最后一列抛弃。案例中为0列。
  • Select Operator:进行列投影操作。
  • expressions:输出的列。gender和num。

通过查看以上的执行计划,可以看出在使用含有grouping sets语句的SQL中,hive执行计划并没有给出具体的实现细节。

再执行具有多个聚合列的实例来看看:

例2 聚合年龄和聚合性别多列合并测试。

set hive.map.aggr=true;
explain
select gender,age,count(0) as num from temp.user_info_all 
where ymd = '20230505'
and age < 30 
group by gender,age grouping sets(gender,age);

注:grouping sets后进行分组的列一定要在之前的group by中进行申明。

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: user_info_all
            Statistics: Num rows: 32634295 Data size: 783223080 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (age < 30) (type: boolean)
              Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: count(0)
                keys: gender (type: int), age (type: bigint), 0 (type: int)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 21756196 Data size: 522148704 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: int), _col1 (type: bigint), _col2 (type: int)
                  sort order: +++
                  Map-reduce partition columns: _col0 (type: int), _col1 (type: bigint), _col2 (type: int)
                  Statistics: Num rows: 21756196 Data size: 522148704 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col3 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: int), KEY._col1 (type: bigint), KEY._col2 (type: int)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col3
          Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
          pruneGroupingSetId: true
          Select Operator
            expressions: _col0 (type: int), _col1 (type: bigint), _col3 (type: bigint)
            outputColumnNames: _col0, _col1, _col2
            Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
            File Output Operator
              compressed: true
              Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
              table:
                  input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                  serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

通过以上两个例子可以看出hive执行计划中没有具体的高级分组聚合如何实现分组方案。两者执行方式基本上差不多。

在数据扫描和查询上的确减少了多次数据扫描和数据io操作。在一定程度上节省了计算资源。

例3 使用cube替代grouping sets 。

set hive.map.aggr=true;
explain
select gender,age,count(0) as num from temp.user_info_all 
where ymd = '20230505'
and age < 30 
group by gender,age with cube;

-- 等价语句
select gender,age,count(0) as num from temp.user_info_all 
where ymd = '20230505'
and age < 30 
group by gender,age grouping sets((gender,age),(gender),(age),());
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: user_info_all
            Statistics: Num rows: 32634295 Data size: 783223080 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (age < 30) (type: boolean)
              Statistics: Num rows: 10878098 Data size: 261074352 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: count(0)
                keys: gender (type: int), age (type: bigint), 0 (type: int)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 43512392 Data size: 1044297408 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: int), _col1 (type: bigint), _col2 (type: int)
                  sort order: +++
                  Map-reduce partition columns: _col0 (type: int), _col1 (type: bigint), _col2 (type: int)
                  Statistics: Num rows: 43512392 Data size: 1044297408 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col3 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: int), KEY._col1 (type: bigint), KEY._col2 (type: int)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col3
          Statistics: Num rows: 21756196 Data size: 522148704 Basic stats: COMPLETE Column stats: NONE
          pruneGroupingSetId: true
          Select Operator
            expressions: _col0 (type: int), _col1 (type: bigint), _col3 (type: bigint)
            outputColumnNames: _col0, _col1, _col2
            Statistics: Num rows: 21756196 Data size: 522148704 Basic stats: COMPLETE Column stats: NONE
            File Output Operator
              compressed: true
              Statistics: Num rows: 21756196 Data size: 522148704 Basic stats: COMPLETE Column stats: NONE
              table:
                  input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                  serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

以上例3 cube语句和例2语句输出数据完全是不一样的。但其输出执行计划内容基本和例2一致。可以看出hive的执行计划对高级分组聚合拆分执行计划的支持还不是很好。

使用高级分组聚合,要注意开启map端聚合模式。

使用高级分组聚合,如上案例,仅使用一个作业就能够实现union写法需要多个作业才能实现的逻辑。

从这点上来看能够减少多个作业在磁盘和网络I/O时的负担,是一种优化。

但是同时也要注意因过度使用高级分组聚合语句而导致的数据急速膨胀问题。

  • 通常使用简单的group by 语句,一份数据只有一种聚合结果,一个分组聚合通常只有一个记录;

  • 使用高级分组聚合,例如cube,在一个作业中一份数据会存在多种聚合情况,最终输出是,每种聚合情况各自对应一条数据。

注意事项:

如果使用高级分组聚合的语句处理的底表,在数据量很大的情况下容易导致Map或者Reduce任务因硬件资源不足而崩溃。

hive中使用hive.new.job.grouping.set.cardinality 配置项来应对以上情况。

如果SQL语句中处理分组聚合情况超过该配置项指定的值,默认值为(30),则会创建一个新的作业。

下一期:hive窗口分析函数解读以及带窗口分析函数的SQL性能分析

按例,欢迎点击此处关注我的个人公众号,交流更多知识。

后台回复关键字 hive,随机赠送一本鲁边备注版珍藏大数据书籍。文章来源地址https://www.toymoban.com/news/detail-508491.html

到了这里,关于什么是hive的高级分组聚合,它的用法和注意事项以及性能分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • group by聚合分组后如何获取分组数据

    之前用group by分组后一直困惑怎么把分组后的数据拿到,因为分组后同一组的只有一条数据,最后发现了 group_concat函数。记录一下,以后能用。 语法:group_concat( [distinct] 要连接的字段 [order by 排序字段 asc/desc ] [separator \\\'分隔符\\\'] ) 说明:通过使用 distinct 可以排除重复值(去重

    2024年02月05日
    浏览(44)
  • ES 聚合分组查询 语法

    ES 聚合分组查询的语法如下: 其中 index 是索引名称, size 设置为 0 意味着只返回聚合结果而不返回文档。 aggs 字段是聚合查询的核心部分,这里以 group_by_field 为例进行分组查询,其中 terms 指定了分组的字段名称。 这样的查询会返回按照 field_name 字段进行分组后每个分组的

    2024年02月11日
    浏览(39)
  • 数据分析 — Pandas 分组聚合

    pandas.apply() 是 Pandas 库中的一个函数,用于在 DataFrame 或 Series 上应用自定义函数。这个函数可以 沿着指定的轴(行或列)逐行或逐列地应用函数 ,从而实现对数据的定制化操作。 参数: func(必需):这是要应用的函数,可以是一个 Python 函数、lambda 函数或可调用对象。这

    2024年02月19日
    浏览(45)
  • 使用Elasticsearch进行分组聚合统计

    要使用Elasticsearch进行分组聚合统计,可以使用聚合(aggregation)功能。聚合操作允许您根据指定的条件对文档进行分组,并计算每个分组的聚合结果。 针对普通类型的字段,DSL构建语法: aggs: aggregations的别名,代表着分组 agg_name: 这个是自定义的名字,可以针对你自己

    2024年02月15日
    浏览(45)
  • 【MySQL】聚合函数与分组查询

    MySQL中的聚合函数用于对数据进行计算和统计,常见的聚合函数包括下面列举出来的聚合函数: 查看班级有多少同学 统计数学成绩有多少个 统计英语不及格的人数 查看数学成绩的总和 统计英语不及格的分数总和 统计不及格的英语的平均分不需要上面那么麻烦自己手动除:

    2024年02月14日
    浏览(41)
  • elasticsearch中的聚合分组查询

    分组聚合及嵌套查询 聚合查询可以理解为SQL中的求和、求最大值、最小值以及求均值的需求 嵌套可以理解为es存值的某一个字段为对象属性的值做处理. Elasticsearch Java API分组与聚合结合 其中对字段field_one进行分组,分组的别名为fieldOne,取2^31-1组数据.如果不设置size,查询的结果

    2024年02月11日
    浏览(47)
  • Django ORM 聚合查询和分组查询

    阅读文本前请参考此文章的数据表结构 对QuerySet计算统计值,需要使用 aggregate 方法,提供的参数可以是一个或多个聚合函数 Django提供了一系列的聚合函数,其中 Avg (平均值)、 Count (计数)、 Max (最大值)、 Min (最小值)、 Sum (加和)最为常用 要使用这些聚合函数,

    2024年02月01日
    浏览(62)
  • Java Elasticsearch多条件分组聚合查询

    需求         在项目开发中,需要从elasticsearch中查询日志数据,先统计每一天的日志调用量,然后在每一天的分组聚合基础上,再分组聚合统计成功和失败的日志调用量。 代码

    2024年02月08日
    浏览(55)
  • pandas分组与聚合groupby()函数详解

    一、groupby分组与聚合 分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=_NoDefault.no_default, squeeze=_NoDefault.no_default, observed=False, dropna=True) :使用映射器或按一Serie

    2024年02月14日
    浏览(48)
  • Springboot操作Elasticsearch——聚合分组与排序

    这两天项目中需要从es中查询数据,根据某个字段进行分组,求其最大、最小、平均值,并按最大值进行排序。 springboot的版本号:2.0.6.RELEASE Elasticsearch的版本号:5.6.3 主要代码记录下: BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery()                 .filter(QueryBuilders.termsQu

    2024年02月16日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包