opencv进行双目标定以及极线校正 python代码

这篇具有很好参考价值的文章主要介绍了opencv进行双目标定以及极线校正 python代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

双目标定

参考博客 OpenCV相机标定全过程
[OpenCV实战]38 基于OpenCV的相机标定
opencv立体标定函数 stereoCalibrate()

主要使用的函数

findChessboardCorners() #棋盘格角点检测
cornerSubPix() #亚像素检测
calibrateCamera() #单目标定 求解摄像机的内在参数和外在参数
stereoCalibrate() #双目标定 求解两个摄像头的内外参数矩阵,以及两个摄像头的位置关系R,T

代码

import cv2
import os
import numpy as np

leftpath = 'images/left'
rightpath = 'images/right'
CHECKERBOARD = (11,12)  #棋盘格内角点数
square_size = (30,30)   #棋盘格大小,单位mm
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
imgpoints_l = []    #存放左图像坐标系下角点位置
imgpoints_r = []    #存放左图像坐标系下角点位置
objpoints = []   #存放世界坐标系下角点位置
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
objp[0,:,0] *= square_size[0]
objp[0,:,1] *= square_size[1]


for ii in os.listdir(leftpath):
    img_l = cv2.imread(os.path.join(leftpath,ii))
    gray_l = cv2.cvtColor(img_l,cv2.COLOR_BGR2GRAY)
    img_r = cv2.imread(os.path.join(rightpath,ii))
    gray_r = cv2.cvtColor(img_r,cv2.COLOR_BGR2GRAY)
    ret_l, corners_l = cv2.findChessboardCorners(gray_l, CHECKERBOARD)   #检测棋盘格内角点
    ret_r, corners_r = cv2.findChessboardCorners(gray_r, CHECKERBOARD)
    if ret_l and ret_r:
        objpoints.append(objp)
        corners2_l = cv2.cornerSubPix(gray_l,corners_l,(11,11),(-1,-1),criteria) 
        imgpoints_l.append(corners2_l)
        corners2_r = cv2.cornerSubPix(gray_r,corners_r,(11,11),(-1,-1),criteria)
        imgpoints_r.append(corners2_r)
        #img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2,ret)
        #cv2.imwrite('./ChessboardCornersimg.jpg', img)
ret, mtx_l, dist_l, rvecs_l, tvecs_l = cv2.calibrateCamera(objpoints, imgpoints_l, gray_l.shape[::-1],None,None)  #先分别做单目标定
ret, mtx_r, dist_r, rvecs_r, tvecs_r = cv2.calibrateCamera(objpoints, imgpoints_r, gray_r.shape[::-1],None,None)

retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = \
    cv2.stereoCalibrate(objpoints, imgpoints_l, imgpoints_r, mtx_l, dist_l, mtx_r, dist_r, gray_l.shape[::-1])   #再做双目标定

print("stereoCalibrate : \n")
print("Camera matrix left : \n")
print(cameraMatrix1)
print("distCoeffs left  : \n")
print(distCoeffs1)
print("cameraMatrix left : \n")
print(cameraMatrix2)
print("distCoeffs left : \n")
print(distCoeffs2)
print("R : \n")
print(R)
print("T : \n")
print(T)
print("E : \n")
print(E)
print("F : \n")
print(F)

将打印的结果保存到标定文件中即可

极线校正

参考博客 机器视觉学习笔记(8)——基于OpenCV的Bouguet立体校正
小白视角之Bouguet双目立体校正原理

主要使用的函数

stereoRectify() #计算旋转矩阵和投影矩阵
initUndistortRectifyMap() #计算校正查找映射表
remap() #重映射

代码

import cv2
import numpy as np

def cat2images(limg, rimg):
    HEIGHT = limg.shape[0]
    WIDTH = limg.shape[1]
    imgcat = np.zeros((HEIGHT, WIDTH*2+20,3))
    imgcat[:,:WIDTH,:] = limg
    imgcat[:,-WIDTH:,:] = rimg
    for i in range(int(HEIGHT / 32)):
        imgcat[i*32,:,:] = 255 
    return imgcat

left_image = cv2.imread("images/left/268.jpg")
right_image = cv2.imread("images/right/268.jpg")

imgcat_source = cat2images(left_image,right_image)
HEIGHT = left_image.shape[0]
WIDTH = left_image.shape[1]
cv2.imwrite('imgcat_source.jpg', imgcat_source )

camera_matrix0 = np.array([[1.30991855e+03, 0.00000000e+00, 5.90463086e+02],
                            [0.00000000e+00, 1.31136722e+03, 3.33464608e+02],
                            [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]
                        ) .reshape((3,3)) #即上文标定得到的 cameraMatrix1
                        
distortion0 = np.array([-4.88890701e-01,  3.27964225e-01, -2.72130825e-04,  1.28030208e-03, -1.85964828e-01]) #即上文标定得到的 distCoeffs1

camera_matrix1 = np.array([[1.30057467e+03, 0.00000000e+00, 6.28445749e+02],
                            [0.00000000e+00, 1.30026325e+03, 3.90475091e+02],
                            [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]
                        ) .reshape((3,3)) #即上文标定得到的 cameraMatrix2
distortion1 = np.array([-4.95938411e-01,  2.70207629e-01,  1.81014753e-04, -4.58891345e-04, 4.41327829e-01]) #即上文标定得到的 distCoeffs2

R = np.array([[ 0.99989348,  0.01340678, -0.00576869], 
              [-0.01338004,  0.99989967,  0.00465071], 
              [ 0.00583046, -0.00457303,  0.99997255]]
            ) #即上文标定得到的 R
T = np.array([-244.28272039, 3.84124178, 2.0963191]) #即上文标定得到的T


(R_l, R_r, P_l, P_r, Q, validPixROI1, validPixROI2) = \
    cv2.stereoRectify(camera_matrix0, distortion0, camera_matrix1, distortion1, np.array([WIDTH,HEIGHT]), R, T) #计算旋转矩阵和投影矩阵

(map1, map2) = \
    cv2.initUndistortRectifyMap(camera_matrix0, distortion0, R_l, P_l, np.array([WIDTH,HEIGHT]), cv2.CV_32FC1) #计算校正查找映射表

rect_left_image = cv2.remap(left_image, map1, map2, cv2.INTER_CUBIC) #重映射

#左右图需要分别计算校正查找映射表以及重映射
(map1, map2) = \
    cv2.initUndistortRectifyMap(camera_matrix1, distortion1, R_r, P_r, np.array([WIDTH,HEIGHT]), cv2.CV_32FC1)
    
rect_right_image = cv2.remap(right_image, map1, map2, cv2.INTER_CUBIC)

imgcat_out = cat2images(rect_left_image,rect_right_image)
cv2.imwrite('imgcat_out.jpg', imgcat_out)

效果图

校正前
左图
opencv进行双目标定以及极线校正 python代码
右图
opencv进行双目标定以及极线校正 python代码

opencv进行双目标定以及极线校正 python代码
校正后
opencv进行双目标定以及极线校正 python代码文章来源地址https://www.toymoban.com/news/detail-508548.html

到了这里,关于opencv进行双目标定以及极线校正 python代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 双目相机标定及高精度测量方法,含c++和python代码说明

    视觉测量定位中,双面相机高精度标定是一个重要的步骤。下面是关于如何进行双面相机高精度标定的说明和C++和Python代码实现。 1. 双面相机高精度标定的原理 双面相机高精度标定的目的是确定相机内部参数和外部参数。其中,内部参数包括焦距、主点和畸变系数等,外部

    2023年04月08日
    浏览(41)
  • python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

    今天的低价单孔摄像机(照相机)会给图像带来很多畸变。畸变主要有两 种:径向畸变和切想畸变。如下图所示,用红色直线将棋盘的两个边标注出来, 但是你会发现棋盘的边界并不和红线重合。所有我们认为应该是直线的也都凸 出来了。 在 3D 相关应用中,必须要先校正这些畸变

    2024年02月06日
    浏览(50)
  • 用OpenCV进行相机标定(张正友标定,有代码)

    理论部分可以参考其他博客或者视觉slam十四讲 相机标定主要是为了获得相机的内参矩阵K和畸变参数 内参矩阵K 畸变系数:径向畸变(k1,k2,k3), 切向畸变(p1,p2) 径向畸变公式 切向畸变公式 张正友标定方法能够提供一个比较好的初始解,用于后序的最优化. 这里用棋盘格进行标定,如

    2024年02月07日
    浏览(41)
  • kalibr 进行相机单目、双目标定全流程

    参考链接: Installation · ethz-asl/kalibr Wiki · GitHub Docker 操作知识: Docker攻略:从安装到入门到进阶 | Dockerfile调优 | 镜像分层 | 容器生命周期/5种网络模式 |跨宿主机通信_血煞长虹的博客-CSDN博客 部署kalibr步骤如下: 1.拉取镜像 2.创建container 3.进入container 运行以后即可进入con

    2024年02月09日
    浏览(44)
  • 使用opencv做双目测距(相机标定+立体匹配+测距)

    最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~ 双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼。 所以

    2024年01月20日
    浏览(38)
  • OpenCV快速入门:相机标定——单目视觉和双目视觉

    在当今科技日益发展的时代,计算机视觉作为人工智能的重要分支,已经深入到我们生活的各个领域。在这个广阔的领域中,相机标定是一个基础且关键的步骤,它直接影响到视觉系统的精度和效能。尤其是在单目视觉和双目视觉的应用中,准确的相机标定成为了实现高效和

    2024年02月05日
    浏览(49)
  • 使用python-opencv对双目摄像头进行立体视觉图像矫正,去畸变

            1、一张棋盘图         可以直接从opencv官方github下载,这是一个拥有10*7个格子的棋盘,共有 9*6个角点,每个格子24mm ,本文所使用的就是这一个棋盘。你需要将它打印在A4纸上用于后续使用。(也可以根据官方教程自行设置棋盘大小OpenCV: Create calibration pattern)

    2024年02月10日
    浏览(50)
  • OpenCV基础(28)使用OpenCV进行摄像机标定Python和C++

    摄像头是机器人、监控、太空探索、社交媒体、工业自动化甚至娱乐业等多个领域不可或缺的一部分。 对于许多应用,必须了解相机的参数才能有效地将其用作视觉传感器。 在这篇文章中,您将了解相机校准所涉及的步骤及其意义。 我们还共享 C++ 和 Python 代码以及棋盘图案

    2024年02月04日
    浏览(44)
  • 使用opencv-python(cv2)库进行相机标定

    2023年09月11日
    浏览(56)
  • 使用ROS功能包camera_calibration进行单目相机和双目相机的内参和外参标定

    本文总结使用ROS标定单目和双目相机的过程,同时提供生成棋盘格文件的方法。 参考链接: [1]使用ros标定相机的内参和外参 [2]ROS下采用camera_calibration进行双目相机标定 棋盘格可以自己买一个,或者打印一个粘在板子上,棋盘格电子版生成可以参考博客《使用kalibr标定工具进

    2024年02月11日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包