cv2提供了一种圆检测的方法:HoughCircles。该函数的返回结果与参数设置有很大的关系。
检测的图像时9枚钱币,分别使用了阈值(大津法和三角法)、均值偏移滤波以及未处理图像。实验的结果是只要调整param1和param2两个参数,上述方法都能准确的识别图像中的圆形。与圆最贴切的是大津法阈值。使用该方法同时需要使用cv2.THRESHOLD_TRUNC。
1. HoughCircles说明
函数定义如下:文章来源:https://www.toymoban.com/news/detail-508918.html
HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)
参数 | 含义 |
---|---|
image | 原始图像 |
method | 目前只支持cv2.HOUGH_GRADIENT |
dp | 图像解析的反向比例。1为原始大小,2为原始大小的一半 |
minDist | 圆心之间的最小距离。过小会增加圆的误判,过大会丢失存在的圆 |
param1 | Canny检测器的高阈值 |
param2 | 检测阶段圆心的累加器阈值。越小的话,会增加不存在的圆;越大的话,则检测到的圆就更加接近完美的圆形 |
minRadius | 检测的最小圆的半径 |
maxRadius | 检测的最大圆的半径 |
2. 代码
# coding:utf8
import cv2
import numpy as np
def row_method(src):
image = np.array(src)
cimage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 灰度图
circles = cv2.HoughCircles(cimage, cv2.HOUGH_GRADIENT, 1, 40, param1=250, param2=58, minRadius=0)
circles = np.uint16(np.around(circles)) # 取整
for i in circles[0, :]:
cv2.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2) # 在原图上画圆,圆心,半径,颜色,线框
cv2.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2) # 画圆心
cv2.putText(image, "param1=250, param2=58", (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
cv2.imshow("row_circles", image)
def threshold_OTSU_method(src):
image = np.array(src)
cimage = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 灰度图
th, dst = cv2.threshold(cimage, 200, 255, cv2.THRESH_BINARY + cv2.THRESH_TRUNC + cv2.THRESH_OTSU)
circles = cv2.HoughCircles(dst, cv2.HOUGH_GRADIENT, 1, 40, param1=50, param2=47, minRadius=0)
circles = np.uint16(np.around(circles)) # 取整
for i in circles[0, :]:
cv2.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2) # 在原图上画圆,圆心,半径,颜色,线框
cv2.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2) # 画圆心
cv2.putText(image, "param1=50, param2=47", (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
cv2.imshow("otsu_circles", image)
def threshold_triangle_method(src):
image = np.array(src)
cimage = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 灰度图
th, dst = cv2.threshold(cimage, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_TRIANGLE)
circles = cv2.HoughCircles(dst, cv2.HOUGH_GRADIENT, 1, 40, param1=50, param2=17, minRadius=0)
circles = np.uint16(np.around(circles)) # 取整
for i in circles[0, :]:
cv2.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2) # 在原图上画圆,圆心,半径,颜色,线框
cv2.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2) # 画圆心
cv2.putText(image, "param1=50, param2=17", (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
cv2.imshow("triangle_circles", image)
def mean_circles(src):
image = np.array(src)
dst = cv2.pyrMeanShiftFiltering(image, 10, 100) # 均值偏移滤波
cimage = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY) # 灰度图
circles = cv2.HoughCircles(cimage, cv2.HOUGH_GRADIENT, 1, 40, param1=50, param2=20, minRadius=0)
circles = np.uint16(np.around(circles)) # 取整
for i in circles[0, :]:
cv2.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2) # 在原图上画圆,圆心,半径,颜色,线框
cv2.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2) # 画圆心
cv2.putText(image, "param1=50, param2=20", (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
cv2.imshow("mean_circles", image)
src = cv2.imread("circle.png") # 读取图片位置
cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE)
cv2.imshow("input image", src)
threshold_OTSU_method(src)
threshold_triangle_method(src)
mean_circles(src)
row_method(src)
cv2.waitKey(0)
cv2.destroyAllWindows()
3.结果
文章来源地址https://www.toymoban.com/news/detail-508918.html
到了这里,关于python cv2.HoughCircles 霍夫圆检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!