目标检测模型中的Bells and wisthles

这篇具有很好参考价值的文章主要介绍了目标检测模型中的Bells and wisthles。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


目标检测模型中的Bells and wisthles

目标检测模型中的Bells and wisthles

介绍常见的提升检测模型性能的技巧,它们常作为trick在比赛中应用。其实,这样的名称有失公允,部分工作反映了作者对检测模型有启发意义的观察,有些具有成为检测模型标准组件的潜力(如果在早期的工作中即被应用则可能成为通用做法)。读者将它们都看作学术界对解决这一问题的努力即可。对研究者,诚实地报告所引用的其他工作并添加有说服力的消融实验(ablation expriments)以支撑自己工作的原创性和贡献之处,则是值得倡导的行为。

1. Data augmentation 数据增强

数据增强是增加深度模型鲁棒性和泛化性能的常用手段,随机翻转、随机裁剪、添加噪声等也被引入到检测任务的训练中来,其信念是通过数据的一般性来迫使模型学习到诸如对称不变性、旋转不变性等更一般的表示。通常需要注意标注的相应变换,并且会大幅增加训练的时间。个人认为数据(监督信息)的适时传入可能是更有潜力的方向。

    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.RandomRotation(15),  # 数据增强
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ])


	# Augmenter()数据增强
    dataset_train = CocoDataset(parser.dataset['coco'], set_name='train2017',
                                transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
    dataset_val = CocoDataset(parser.dataset['coco'], set_name='val2017',
                                transform=transforms.Compose([Normalizer(), Resizer()]))

2. Multi-scale Training/Testing 多尺度训练/测试

输入图片的尺寸对检测模型的性能影响相当明显,事实上,多尺度是提升精度最明显的技巧之一。在基础网络部分常常会生成比原图小数十倍的特征图,导致小物体的特征描述不容易被检测网络捕捉。通过输入更大、更多尺寸的图片进行训练,能够在一定程度上提高检测模型对物体大小的鲁棒性,仅在测试阶段引入多尺度,也可享受大尺寸和多尺寸带来的增益。

Multi-scale Training/Testing最早见于[1],训练时,预先定义几个固定的尺度,每个epoch随机选择一个尺度进行训练。测试时,生成几个不同尺度的feature map,对每个Region Proposal,在不同的feature map上也有不同的尺度,我们选择最接近某一固定尺寸(即检测头部的输入尺寸)的Region Proposal作为后续的输入。在[2]中,选择单一尺度的方式被Maxout(element-wise max,逐元素取最大)取代:随机选两个相邻尺度,经过Pooling后使用Maxout进行合并,如下图所示。

目标检测模型中的Bells and wisthles
使用Maxout合并feature vector

近期的工作如FPN等已经尝试在不同尺度的特征图上进行检测,但多尺度训练/测试仍作为一种提升性能的有效技巧被应用在MS COCO等比赛中。

import torch
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader

# 定义多尺度训练的缩放因子列表
scale_factors = [0.5, 0.75, 1.0, 1.25, 1.5]

# 定义训练和测试函数
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, target, reduction='sum').item()  # 将一批的损失相加
            pred = output.argmax(dim=1, keepdim=True)  # 找到概率最大的索引
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

# 定义训练和测试数据集
train_dataset = MyDataset(train=True)
test_dataset = MyDataset(train=False)

# 定义训练和测试数据集的DataLoader
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)

# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义网络模型和优化器
model = MyModel().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# 多尺度训练循环
for epoch in range(10):
    for scale_factor in scale_factors:
        # 对训练和测试数据集进行缩放
        train_dataset.set_scale_factor(scale_factor)
        test_dataset.set_scale_factor(scale_factor)

        # 训练和测试
        train(model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
"""
在上面的代码中,MyDataset和MyModel是用户定义的训练和测试数据集类和神经网络模型类。
train和test函数分别用于执行训练和测试。
scale_factors是一个缩放因子列表,用于对数据集进行多尺度训练和测试。
在多尺度训练循环中,对于每个缩放因子,都会对训练和测试数据集进行缩放,并执行训练和测试操作。
"""

3. Global Context 全局语境

把整张图片作为一个RoI,对其进行RoI Pooling并将得到的feature vector拼接于每个RoI的feature vector上,作为一种辅助信息传入之后的R-CNN子网络[3]。目前,也有把相邻尺度上的RoI互相作为context共同传入的做法。

4. Box Refinement/Voting 预测框微调/投票法

微调法和投票法由工作[4]提出,前者也被称为Iterative Localization。微调法最初是在SS算法得到的Region Proposal基础上用检测头部进行多次迭代得到一系列box,在ResNet的工作中,作者将输入R-CNN子网络的Region Proposal和R-CNN子网络得到的预测框共同进行NMS(见下面小节)后处理,最后,把跟NMS筛选所得预测框的IoU超过一定阈值的预测框进行按其分数加权的平均,得到最后的预测结果。投票法可以理解为以顶尖筛选出一流,再用一流的结果进行加权投票决策。

5. OHEM 在线难例挖掘

OHEM(Online Hard negative Example Mining,在线难例挖掘)见于[5]。两阶段检测模型中,提出的RoI Proposal在输入R-CNN子网络前,我们有机会对正负样本(背景类和前景类)的比例进行调整。通常,背景类的RoI Proposal个数要远远多于前景类,Fast R-CNN的处理方式是随机对两种样本进行上采样和下采样,以使每一batch的正负样本比例保持在1:3,这一做法缓解了类别比例不均衡的问题,是两阶段方法相比单阶段方法具有优势的地方,也被后来的大多数工作沿用。

目标检测模型中的Bells and wisthles
OHEM图解

但在OHEM的工作中,作者提出用R-CNN子网络对RoI Proposal预测的分数来决定每个batch选用的样本,这样,输入R-CNN子网络的RoI Proposal总为其表现不好的样本,提高了监督学习的效率。实际操作中,维护两个完全相同的R-CNN子网络,其中一个只进行前向传播来为RoI Proposal的选择提供指导,另一个则为正常的R-CNN,参与损失的计算并更新权重,并且将权重复制到前者以使两个分支权重同步。

OHEM以额外的R-CNN子网络的开销来改善RoI Proposal的质量,更有效地利用数据的监督信息,成为两阶段模型提升性能的常用部件之一。

6. Soft NMS 软化非极大抑制

目标检测模型中的Bells and wisthles
NMS后处理图示

NMS(Non-Maximum Suppression,非极大抑制)是检测模型的标准后处理操作,用于去除重合度(IoU)较高的预测框,只保留预测分数最高的预测框作为检测输出。Soft NMS由[6]提出。在传统的NMS中,跟最高预测分数预测框重合度超出一定阈值的预测框会被直接舍弃,作者认为这样不利于相邻物体的检测。提出的改进方法是根据IoU将预测框的预测分数进行惩罚,最后再按分数过滤。配合Deformable Convnets,Soft NMS在MS COCO上取得了当时最佳的表现。算法改进如下:

目标检测模型中的Bells and wisthles
Soft-NMS算法改进

上图中的 f f f 即为软化函数,通常取线性或高斯函数,后者效果稍好一些。当然,在享受这一增益的同时,Soft-NMS也引入了一些超参,对不同的数据集需要试探以确定最佳配置。

7. RoIAlign RoI对齐

RoIAlign是Mask R-CNN([7])的工作中提出的,针对的问题是 R o I RoI RoI 在进行 P o o l i n g Pooling Pooling 时有不同程度的取整,这影响了实例分割中 mask 损失的计算。文章采用双线性插值的方法将 R o I RoI RoI 的表示精细化,并带来了较为明显的性能提升。这一技巧也被后来的一些工作(如light-head R-CNN)沿用。

拾遗

除去上面所列的技巧外,还有一些做法也值得注意:

  • 更好的先验(YOLOv2):使用聚类方法统计数据中box标注的大小和长宽比,以更好的设置anchor box的生成配置
  • 更好的pre-train模型:检测模型的基础网络通常使用ImageNet(通常是ImageNet-1k)上训练好的模型进行初始化,使用更大的数据集(ImageNet-5k)预训练基础网络对精度的提升亦有帮助
  • 超参数的调整:部分工作也发现如NMS中IoU阈值的调整(从0.3到0.5)也有利于精度的提升,但这一方面尚无最佳配置参照

最后,集成(Ensemble)作为通用的手段也被应用在比赛中。文章来源地址https://www.toymoban.com/news/detail-509226.html

References

  • [1]: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    [2]: Object Detection Networks on Convolutional Feature Maps
    [3]: Deep Residual Learning for Image Classification
    [4]: Object Detection via a Multi-region & Semantic Segmentatio-aware CNN Model
    [5]: Training Region-based Object Detectors with Online Hard Example Mining
    [6]: Improving Object Detection With One Line of Code
    [7]: Mask R-CNN

到了这里,关于目标检测模型中的Bells and wisthles的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OPENMV上的目标检测,目标定位模型

    代码地址 在17届省赛结束后,因为担心国赛场地光照影响较大,写了这个目标检测算法。但因为时间以及实力不足,算法仅有了个雏形,没能成功部署,非常遗憾。 今年寒假终于有时间将其完善,也算对自己的锻炼。正好在18届的比赛中有无边框图片,发现该算法在无边框定

    2024年02月05日
    浏览(43)
  • 开集目标检测-标签提示目标检测大模型(吊打YOLO系列-自动化检测标注)

    大多数现有的对象检测模型都经过训练来识别一组有限的预先确定的类别。将新类添加到可识别对象列表中需要收集和标记新数据,并从头开始重新训练模型,这是一个耗时且昂贵的过程。该大模型的目标是开发一个强大的系统来检测由人类语言输入指定的任意对象,而无需

    2024年01月23日
    浏览(62)
  • 目标检测中的IOU

    简单来说IOU就是用来度量目标检测中预测框与真实框的重叠程度。在图像分类中,有一个明确的指标准确率来衡量模型分类模型的好坏。其公式为: 这个公式显然不适合在在目标检测中使用。我们知道目标检测中都是用一个矩形框住被检测物体,又因为检测物体尺度不同,预

    2024年02月14日
    浏览(48)
  • 2023 年十大目标检测模型!

    2023 年十大目标检测模型! 使用深度学习革新对象检测的综合指南。   对象检测示例 “目标检测是计算机视觉中最令人兴奋和最具挑战性的问题之一,而深度学习已成为解决它的强大工具。”  对 象检测是计算机视觉中的一项基本任务,涉及识别和定位图像中的对象。深度

    2024年02月07日
    浏览(31)
  • 目标检测 - RCNN系列模型

    论文:Rich feature hierarchies for accurate object detection and semantic segmentation 地址:https://arxiv.org/abs/1311.2524 分为两个阶段: 目标候选框 Object Proposals Proposals缩放后放入CNN网络 目标候选框的实现:区域提案方法(Extract region proposals):使用选择性搜索selective search提取2000个候选区域,

    2024年01月23日
    浏览(35)
  • 目标检测——SSD模型介绍

    PriorBox层先验框的生成方法 loc的预测结果

    2024年02月16日
    浏览(40)
  • 【mmdetection小目标检测教程】四、修改配置文件,训练专属于你的目标检测模型

    在前面我们已经搭建了环境、完成了高分辨率图片切分成小图,本文将介绍如何使用mmdetection配置文件训练检测模型 mmdetection小目标检测系列教程: 一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装) 二、labelimg标注文件voc格式转coco格式 三、使用sahi库切分高分辨率图片

    2024年02月13日
    浏览(44)
  • YOLOv7如何提高目标检测的速度和精度,基于模型结构提高目标检测速度

    目标检测是计算机视觉领域中的一个重要任务,它的主要目标是在图像或视频中准确地定位和识别特定目标。目标检测算法的速度和精度是衡量其性能的两个重要指标,它们通常是相互矛盾的。在实际应用中,我们需要在速度和精度之间进行权衡,选择适合实际需求的算法。

    2023年04月23日
    浏览(60)
  • 【计算机视觉 | 目标检测】目标检测中的评价指标 mAP 理解及计算(含示例)

    在目标检测中,有几个常用的评价指标用于衡量算法的性能。以下是其中几个重要的评价指标: Precision(精确率):Precision 衡量了在所有被检测为正样本的样本中,有多少是真正的正样本。 Precision 的计算公式为:Precision = TP / (TP + FP),其中 TP 是真正的正样本数量,FP 是将负

    2024年01月19日
    浏览(52)
  • 目标检测中的知识蒸馏方法

    知识蒸馏 (Knowledge Distillation KD) 是 模型压缩 (轻量化)的一种有效的解决方案,这种方法可以使轻量级的学生模型获得繁琐的教师模型中的知识。知识蒸馏使用一种 教师—学生 (Teacher-Student)训练结构,通常是已训练好的教师模型提供知识,学生模型通过蒸馏训练来获取教师

    2024年02月06日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包