相机雷达联合标定cam_lidar_calibration

这篇具有很好参考价值的文章主要介绍了相机雷达联合标定cam_lidar_calibration。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

运行环境:

ubuntu18.04.6 melodic
opencv 3.4.16
python 2.7.17 (ros自带)
usb-cam
速腾robosense 16

1.1 ROS环境配置

官方Github: https://github.com/acfr/cam_lidar_calibration
rs_to_velodyne :https://github.com/HViktorTsoi/rs_to_velodyne

1)工作空间创建和编译

# 创建工作空间
mkdir -p calib_new_ws/src
cd calib_new_ws/src

# 克隆仓库
git clone -c http.sslverify=false https://gitlab.acfr.usyd.edu.au/its/cam_lidar_calibration.git

# 下载ros和python依赖
sudo apt update && sudo apt-get install -y ros-noetic-pcl-conversions ros-noetic-pcl-ros ros-noetic-tf2-sensor-msgs
pip install pandas scipy

# 编译
cd calib_new_ws
catkin_make

2)官方数据集测试环境

①开始标定

source ./devel/setup.bash
roslaunch cam_lidar_calibration run_optimiser.launch import_samples:=true

标定好的文件保存在 cam_lidar_calibration/data/vlp/路径下

②评估标定结果

roslaunch cam_lidar_calibration assess_results.launch csv:="$(rospack find cam_lidar_calibration)/data/vlp/calibration_quickstart.csv" visualise:=true

2.1 在线标定

1)数据类型

激光雷达点云类型为XYZIR
雷达话题数据类型 sensor_msgs::PointCloud2
相机话题数据类型 sensor_msgs::Image、sensor_msgs::CameraInfo

rostopic list
rostopic type /velodyne_points
rostopic type /usb_cam/image_raw
rostopic type /usb_cam/camera_info
# 启动相机
# 启动雷达
# 速腾转rs
rosrun rs_to_velodyne rs_to_velodyne XYZIRT XYZIR

标定好的文件保存在cam_lidar_calibration/data路径下

2)标定板制作

标定板打印路径
我们标定板大小:图3—A1(841 x 594mm), 小方格边长 95mm ,内部顶点 7x5

相机雷达联合标定cam_lidar_calibration相机雷达联合标定cam_lidar_calibration

相机雷达联合标定cam_lidar_calibration

标定注意事项:标定板摆放与地面成45°角

3)配置文件

设置params.yaml中的话题和棋盘格大小(参考标定板制作内容)

# 速腾RS16 + usb_cam
camera_topic: "/usb_cam/image_raw"
camera_info: "/usb_cam/camera_info"
# rs 话题
# lidar_topic: "/rslidar_points" 
# rs_to_velodyne 话题
lidar_topic: "/velodyne_points"

相机雷达联合标定cam_lidar_calibration

4)开始标定

偏移量设置(减少平均误差) distance_offset_mm=-30
相机雷达联合标定cam_lidar_calibration

①启动标定包

roslaunch cam_lidar_calibration run_optimiser.launch import_samples:=false

②调整 rqt_reconfigure 中的 x、y 、 z 分离出棋盘点云, 分离好一张点Capture, 有问题的点discard。分离好20张左右点Optimise。
相机雷达联合标定cam_lidar_calibration
相机雷达联合标定cam_lidar_calibration
相机雷达联合标定cam_lidar_calibration

标定注意事项:对于 VLP-16,至少保证7条线打在标定板上

②获取标定结果

# 官方
roslaunch cam_lidar_calibration assess_results.launch csv:="$(rospack find cam_lidar_calibration)/data/vlp/calibration_quickstart.csv" visualise:=true

# 自己目录下的
roslaunch cam_lidar_calibration assess_results.launch csv:="$(rospack find cam_lidar_calibration)/data/2023-06-27_11-46-29/calibration_2023-06-27_11-56-14.csv" visualise:=true

相机雷达联合标定cam_lidar_calibration
相机雷达联合标定cam_lidar_calibration
相机雷达联合标定cam_lidar_calibration

5)完整实现步骤

详细操作见博客:
Robosense激光雷达Linux配置
usb_cam 相机ROS配置
usb_cam相机标定实践 ROS

1.启动相机
cd /home/duduzai/SPbot/usb_cam_ws
source ./devel/setup.bash
roslaunch usb_cam usb_cam.launch

2.启动雷达(注释雷达launch中的rviz)
cd /home/duduzai/SPbot/robosense_ws
source ./devel/setup.bash
roslaunch rslidar_sdk start.launch

3.rs to velodyne
cd source ./devel/setup.bash
source ./devel/setup.bash
rosrun rs_to_velodyne rs_to_velodyne XYZIRT XYZIR

4、标定
cd /home/duduzai/SPbot/calib_new_ws
source ./devel/setup.bash
roslaunch cam_lidar_calibration run_optimiser.launch import_samples:=false
roslaunch cam_lidar_calibration assess_results.launch csv:="$(rospack find cam_lidar_calibration)/data/vlp/calibration_2023-04-20_17-23-44.csv" visualise:=true

3.1 python版本选择

相机雷达联合标定cam_lidar_calibration文章来源地址https://www.toymoban.com/news/detail-509304.html

3.2 rviz参数修改

Panels:
  - Class: rviz/Displays
    Help Height: 0
    Name: Displays
    Property Tree Widget:
      Expanded:
        - /Global Options1
        - /Status1
        - /Image1
        - /Image2
        - /MarkerArray1
      Splitter Ratio: 0.5
    Tree Height: 366
  - Class: rviz/Selection
    Name: Selection
  - Class: rviz/Tool Properties
    Expanded:
      - /2D Pose Estimate1
      - /2D Nav Goal1
      - /Publish Point1
    Name: Tool Properties
    Splitter Ratio: 0.5886790156364441
  - Class: rviz/Views
    Expanded:
      - /Current View1
    Name: Views
    Splitter Ratio: 0.5
  - Class: rviz/Time
    Experimental: false
    Name: Time
    SyncMode: 0
    SyncSource: Image
  - Class: cam_lidar_calibration/CamLidarCalibration
    Name: CamLidarCalibration
Preferences:
  PromptSaveOnExit: true
Toolbars:
  toolButtonStyle: 2
Visualization Manager:
  Class: ""
  Displays:
    - Alpha: 0.5
      Cell Size: 1
      Class: rviz/Grid
      Color: 160; 160; 164
      Enabled: true
      Line Style:
        Line Width: 0.029999999329447746
        Value: Lines
      Name: Grid
      Normal Cell Count: 0
      Offset:
        X: 0
        Y: 0
        Z: 0
      Plane: XY
      
      # Plane Cell Count: 10
      Plane Cell Count: 50
      Reference Frame: <Fixed Frame>
      Value: true
    - Class: rviz/Image
      Enabled: true
      Image Topic: /gmsl/A0/image_color
      Max Value: 1
      Median window: 5
      Min Value: 0
      Name: Image
      Normalize Range: true
      Queue Size: 2
      Transport Hint: raw
      Unreliable: false
      Value: true
    - Class: rviz/Image
      Enabled: true

      # Image Topic: /camera_features
      Image Topic: /usb_cam/image_raw
      Max Value: 1
      Median window: 5
      Min Value: 0
      Name: Image
      Normalize Range: true
      Queue Size: 2
      Transport Hint: raw
      Unreliable: false
      Value: true
    - Alpha: 1
      Autocompute Intensity Bounds: true
      Autocompute Value Bounds:
        Max Value: 10
        Min Value: -10
        Value: true
      Axis: Z
      Channel Name: intensity
      Class: rviz/PointCloud2
      Color: 255; 255; 255
      Color Transformer: Intensity
      Decay Time: 0
      Enabled: true
      Invert Rainbow: false
      Max Color: 255; 255; 255

      # Max Intensity: 217
      Max Intensity: 155
      Min Color: 0; 0; 0
      Min Intensity: 1
      Name: Experimental Region
      Position Transformer: XYZ
      Queue Size: 10
      Selectable: true
      Size (Pixels): 3

      # Size (m): 0.009999999776482582
      Size (m): 0.01
      Style: Flat Squares
      Topic: /feature_extraction/experimental_region
      Unreliable: false
      Use Fixed Frame: true
      Use rainbow: true
      Value: true
    - Alpha: 1
      Autocompute Intensity Bounds: true
      Autocompute Value Bounds:
        Max Value: 10
        Min Value: -10
        Value: true
      Axis: Z
      Channel Name: intensity
      Class: rviz/PointCloud2
      Color: 255; 255; 255
      Color Transformer: Intensity
      Decay Time: 0
      Enabled: true
      Invert Rainbow: false
      Max Color: 255; 255; 255
      Max Intensity: 60
      Min Color: 0; 0; 0
      Min Intensity: 1
      Name: Chessboard
      Position Transformer: XYZ
      Queue Size: 10
      Selectable: true
      Size (Pixels): 3
      Size (m): 0.009999999776482582
      Style: Flat Squares
      Topic: /feature_extraction/chessboard
      Unreliable: false
      Use Fixed Frame: true
      Use rainbow: true
      Value: true
    - Class: rviz/MarkerArray
      Enabled: true
      Marker Topic: /feature_extraction/collected_samples
      Name: MarkerArray
      Namespaces:
     
    Frame Rate: 30
  Name: root
  Tools:
    - Class: rviz/Interact
      Hide Inactive Objects: true
    - Class: rviz/MoveCamera
    - Class: rviz/Select
    - Class: rviz/FocusCamera
    - Class: rviz/Measure
    - Class: rviz/SetInitialPose
      Theta std deviation: 0.2617993950843811
      Topic: /initialpose
      X std deviation: 0.5
      Y std deviation: 0.5
    - Class: rviz/SetGoal
      Topic: /move_base_simple/goal
    - Class: rviz/PublishPoint
      Single click: true
      Topic: /clicked_point
  Value: true
  Views:
    Current:
      Class: rviz/Orbit
      Distance: 7.726625442504883
      Enable Stereo Rendering:
        Stereo Eye Separation: 0.05999999865889549
        Stereo Focal Distance: 1
        Swap Stereo Eyes: false
        Value: false
      Focal Point:
        X: 2.3772096633911133
        Y: -1.2373826503753662
        Z: 1.9428495168685913
      Focal Shape Fixed Size: true
      Focal Shape Size: 0.05000000074505806
      Invert Z Axis: false
      Name: Current View
      Near Clip Distance: 0.009999999776482582
      Pitch: 0.6603978276252747
      Target Frame: <Fixed Frame>
      Value: Orbit (rviz)
      Yaw: 2.71859073638916
    Saved: ~
Window Geometry:
  CamLidarCalibration:
    collapsed: false
  Displays:
    collapsed: false
  Height: 1075
  Hide Left Dock: false
  Hide Right Dock: true
  Image:
    collapsed: false
  QMainWindow State: 000000ff00000000fd00000004000000000000016a00000391fc020000000cfb0000001200530065006c0065006300740069006f006e00000001e10000009b0000005c00fffffffb0000001e0054006f006f006c002000500072006f007000650072007400690065007302000001ed000001df00000185000000a3fb000000120056006900650077007300200054006f006f02000001df000002110000018500000122fb000000200054006f006f006c002000500072006f0070006500720074006900650073003203000002880000011d000002210000017afb000000100044006900730070006c006100790073000000003d000001ab000000c900fffffffb0000002000730065006c0065006300740069006f006e00200062007500660066006500720200000138000000aa0000023a00000294fb00000014005700690064006500530074006500720065006f02000000e6000000d2000003ee0000030bfb0000000c004b0069006e0065006300740200000186000001060000030c00000261fb0000000a0049006d006100670065010000003d000001660000001600fffffffb0000000a0049006d00610067006501000001a90000016d0000001600fffffffb0000000a0049006d0061006700650100000172000001400000000000000000fb0000002600430061006d004c006900640061007200430061006c006900620072006100740069006f006e010000031c000000b2000000a300ffffff000000010000010f00000315fc0200000003fb0000001e0054006f006f006c002000500072006f00700065007200740069006500730100000041000000780000000000000000fb0000000a00560069006500770073000000003d00000315000000a400fffffffb0000001200530065006c0065006300740069006f006e010000025a000000b200000000000000000000000200000490000000a9fc0100000001fb0000000a00560069006500770073030000004e00000080000002e100000197000000030000078000000042fc0100000002fb0000000800540069006d0065010000000000000780000002eb00fffffffb0000000800540069006d00650100000000000004500000000000000000000006100000039100000004000000040000000800000008fc0000000100000002000000010000000a0054006f006f006c00730100000000ffffffff0000000000000000
  Selection:
    collapsed: false
  Time:
    collapsed: false
  Tool Properties:
    collapsed: false
  Views:
    collapsed: true
  Width: 1920
  X: 1920
  Y: 201  Value: true
  Enabled: true
  Global Options:
    Background Color: 48; 48; 48
    Default Light: true
    
    # Fixed Frame: velodyne_front_link
    # Fixed Frame: rslidar 
    Fixed Frame: velodyne
    
    Frame Rate: 30
  Name: root
  Tools:
    - Class: rviz/Interact
      Hide Inactive Objects: true
    - Class: rviz/MoveCamera
    - Class: rviz/Select
    - Class: rviz/FocusCamera
    - Class: rviz/Measure
    - Class: rviz/SetInitialPose
      Theta std deviation: 0.2617993950843811
      Topic: /initialpose
      X std deviation: 0.5
      Y std deviation: 0.5
    - Class: rviz/SetGoal
      Topic: /move_base_simple/goal
    - Class: rviz/PublishPoint
      Single click: true
      Topic: /clicked_point
  Value: true
  Views:
    Current:
      Class: rviz/Orbit
      Distance: 7.726625442504883
      Enable Stereo Rendering:
        Stereo Eye Separation: 0.05999999865889549
        Stereo Focal Distance: 1
        Swap Stereo Eyes: false
        Value: false
      Focal Point:
        X: 2.3772096633911133
        Y: -1.2373826503753662
        Z: 1.9428495168685913
      Focal Shape Fixed Size: true
      Focal Shape Size: 0.05000000074505806
      Invert Z Axis: false
      Name: Current View
      Near Clip Distance: 0.009999999776482582
      Pitch: 0.6603978276252747
      Target Frame: <Fixed Frame>
      Value: Orbit (rviz)
      Yaw: 2.71859073638916
    Saved: ~
Window Geometry:
  CamLidarCalibration:
    collapsed: false
  Displays:
    collapsed: false
  Height: 1075
  Hide Left Dock: false
  Hide Right Dock: true
  Image:
    collapsed: false
  QMainWindow State: 000000ff00000000fd00000004000000000000016a00000391fc020000000cfb0000001200530065006c0065006300740069006f006e00000001e10000009b0000005c00fffffffb0000001e0054006f006f006c002000500072006f007000650072007400690065007302000001ed000001df00000185000000a3fb000000120056006900650077007300200054006f006f02000001df000002110000018500000122fb000000200054006f006f006c002000500072006f0070006500720074006900650073003203000002880000011d000002210000017afb000000100044006900730070006c006100790073000000003d000001ab000000c900fffffffb0000002000730065006c0065006300740069006f006e00200062007500660066006500720200000138000000aa0000023a00000294fb00000014005700690064006500530074006500720065006f02000000e6000000d2000003ee0000030bfb0000000c004b0069006e0065006300740200000186000001060000030c00000261fb0000000a0049006d006100670065010000003d000001660000001600fffffffb0000000a0049006d00610067006501000001a90000016d0000001600fffffffb0000000a0049006d0061006700650100000172000001400000000000000000fb0000002600430061006d004c006900640061007200430061006c006900620072006100740069006f006e010000031c000000b2000000a300ffffff000000010000010f00000315fc0200000003fb0000001e0054006f006f006c002000500072006f00700065007200740069006500730100000041000000780000000000000000fb0000000a00560069006500770073000000003d00000315000000a400fffffffb0000001200530065006c0065006300740069006f006e010000025a000000b200000000000000000000000200000490000000a9fc0100000001fb0000000a00560069006500770073030000004e00000080000002e100000197000000030000078000000042fc0100000002fb0000000800540069006d0065010000000000000780000002eb00fffffffb0000000800540069006d00650100000000000004500000000000000000000006100000039100000004000000040000000800000008fc0000000100000002000000010000000a0054006f006f006c00730100000000ffffffff0000000000000000
  Selection:
    collapsed: false
  Time:
    collapsed: false
  Tool Properties:
    collapsed: false
  Views:
    collapsed: true
  Width: 1920
  X: 1920
  Y: 201

⭐⭐⭐ 嘟嘟崽 ⭐⭐⭐
⭐⭐⭐ 祝你成功 ⭐⭐⭐

到了这里,关于相机雷达联合标定cam_lidar_calibration的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • matlab Lidar Camara Calibrator使用方法及雷达点云对相机的标定

    标定数据导入matlab lidar camara calibrator 插件,点击图示中的 Import 后选择Import Data如图所示: 依次选择导入图像和点云数据如下后点击“ 确定 ”: Matlab会自动导入数据并计算相机内参,然后开始进行相机和点云数据的处理,并进行自动标定,但自动标定结果一般较差,会提示

    2024年02月05日
    浏览(43)
  • 多激光雷达标定multi_LiDAR_calibration

    对于多激光雷达的标定主要采用ICP、NDT等配准方法进行估计多个激光雷达的外参变换矩阵 T T T 。在这里先介绍一些先前关于多激光雷达外参标定的工作: M-LOAM :采用多个激光雷达固定到一个机器人上进行一起SLAM建图,在线标定得到外参矩阵。 multi_lidar_calibration :代码地址

    2024年02月13日
    浏览(42)
  • 激光雷达和相机联合标定

    所有内容仅供个人学习记录 相机内参是相机坐标系转换到图像像素坐标系 相机内参是世界坐标系转换到相机坐标系 相机的成像过程涉及到四个坐标系:世界坐标系、相机坐标系、图像坐标系、像素坐标系。 四个坐标系: 1) 世界坐标系(world coordinate system) 现实世界的三维坐

    2024年01月18日
    浏览(51)
  • 激光雷达-相机联合标定

    https://f.daixianiu.cn/csdn/9499401684344864.html imu与lidar标定 https://github.com/PJLab-ADG/SensorsCalibration/blob/master/lidar2imu/README.md 多雷达标定 https://f.daixianiu.cn/csdn/3885826454722603.html ros usb相机内参标定 ROS系统-摄像头标定camera calibration_berry丶的博客-CSDN博客

    2024年02月15日
    浏览(41)
  • 相机和雷达外参联合标定

    内容: 关于雷达和相机外参联合标定的踩坑纪录。 Date: 2023/03/19 硬件: 上位机: Jetson ORIN (Ubuntu 20.04, ROS noetic) 雷达: Ouster 32线 相机: Intel D435 一、 标定方案 目前流行的 雷达+相机 标定方案有五种:Autoware, apollo, lidar_camera_calibration, but_velodyne。 Ubuntu20.04安装autoware我看bug比较多,因

    2024年02月11日
    浏览(51)
  • 镭神激光雷达和相机联合标定

    镭神激光雷达坐标系和相机坐标系都为右手坐标系 镭神激光雷达坐标系:原点为激光雷达光学中心,右为X,前为Y,上为Z 相机坐标系:原点为相机光心,右为X,下为Y,前为Z 同时规定欧拉角:绕X轴为俯仰角(pitch),绕Y轴为翻滚角(roll),绕Z轴为偏航(航向)角(heading、yaw)。 此时

    2024年02月09日
    浏览(63)
  • Autoware实现相机和激光雷达联合标定

    1-编译 2-修改代码 打开CMakeLIsts.txt 将三处该行 if (\\\"${ROS_VERSION}\\\" MATCHES \\\"(indigo|jade|kinetic)\\\") 改为 if (\\\"${ROS_VERSION}\\\" MATCHES \\\"(indigo|jade|kinetic|melodic)\\\") 重新编译: 3-测试启动 输入命令,显示如下,则证明正常: 启动激光雷达: /velodyne_points /rslidar_points 启动相机: /camera/color/image_raw 设

    2024年01月19日
    浏览(42)
  • 【Ubuntu18.04】激光雷达与相机联合标定(Livox+HIKROBOT)(一)相机内参标定

    Livox Lidar + HIKROBOT Camera 联合标定 参考链接:相机雷达标定文档 安装ROS环境,参考笔者的博客:【ROS】Ubuntu18.04安装Ros 参考链接:海康Camera MVS Linux SDK二次开发封装ROS packge过程记录(c++) 海康的相机没有ros驱动,且对linux开发不太友好(但支持windows),因此需要重写了sdk接口

    2024年02月04日
    浏览(46)
  • 虚拟机(Ubuntu1804)相机与激光雷达联合标定实现过程记录

    在智能小车录制的点云数据在rviz打开一定要修改Fixed Frame为laser_link,这样才能看到点云,注意此时用的是雷神激光雷达,话题名是lslidar_,可采用rostopic list查看具体名称 1、新建一个终端打开roscore 2、在文件夹libratia中新建一个终端 【注意】这里的--pause可以暂停,当后面需要

    2024年02月16日
    浏览(49)
  • autoware标定工具进行固态激光雷达与相机的联合标定并运用标定结果进行投影(C++)

    本文主要介绍速腾聚创的RS-LIDAR-M1固态雷达激光与小觅相机左眼的联合标定过程,并介绍标定过程中的一些技巧与避雷,加快标定效率。最后给出运用标定结果进行投影的关键代码。 一、安装autoware(为了标定完成后的可视化,可选,本文并未用到) 参考https://blog.csdn.net/qq

    2024年02月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包