Tensorflow2——Eager模式简介以及运用

这篇具有很好参考价值的文章主要介绍了Tensorflow2——Eager模式简介以及运用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

TensorFlow的eager执行模式是一个重要的编程环境,它能立即评估运算,而无须构建图:运算会实时返回值,而不是构建一个计算图后再运行。这使得使用TensorFlow和调试模型更简单,并且可以减少很多样板代码。

eager执行模式对研究和实验来说是一个灵活的机器学习平台,有下列特点:文章来源地址https://www.toymoban.com/news/detail-509782.html

  • ·一个更符合直觉的接口:以自然的方式组织代码并可以应用Python数据结构。快速地遍历小的模型和小量数据。
  • ·更易调试:直接调用运算来检查运行的模型和测试变化。用标准的Python调试工具来快速报告错误。
  • ·自然的控制流:使用Python控制流取代图控制流,简化动态模型的配置。
import tensorflow as tf


def multiply(x, y):
    """Matrix multiplication.
    Note: it requires the input shape of both input to match.
    Args:
        x: tf.Tensor a matrix
        y: tf.Tensor a matrix
    Returns:
        The matrix multiplcation x @ y
    """

    assert x.shape == y.shape
    return tf.matmul(x, y)


def add(x, y):
    """Add two tensors.
    Args:
        x: the left hand operand.
        y: the right hand operand. It should be compatible with x.
    Returns:
        x &#

到了这里,关于Tensorflow2——Eager模式简介以及运用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Tensorflow2.0笔记 - 创建tensor

            tensor创建可以基于numpy,list或者tensorflow本身的API。         笔记直接上代码:   notebook运行结果截图:  

    2024年01月21日
    浏览(38)
  • Tensorflow2.0笔记 - 修改形状和维度

            本次笔记主要使用reshape,transpose,expand_dim,和squeeze对tensor的形状和维度进行操作。         运行结果:  

    2024年01月16日
    浏览(36)
  • Tensorflow2 GPU版本-极简安装方式

    1、配置conda环境加速 https://wtl4it.blog.csdn.net/article/details/135723095 https://wtl4it.blog.csdn.net/article/details/135723095 2、tensorflow-gpu安装

    2024年01月21日
    浏览(41)
  • Tensorflow2.0笔记 - Broadcasting和Tile

            关于broadcasting的介绍,参考这篇文章。         https://blog.csdn.net/python_LC_nohtyp/article/details/104097417         运行结果

    2024年01月20日
    浏览(35)
  • 深入浅出TensorFlow2函数——tf.constant

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.constant · 深入浅出TensorFlow2函数——tf.Tensor · 深入浅出Pytorch函数——torch.tensor · 深入浅出Pytorch函数——torch.as_tensor · 深入浅出PaddlePaddle函数——paddle.to_tensor 语法 参数 value :输出张量

    2024年02月11日
    浏览(36)
  • 深入浅出TensorFlow2函数——tf.reshape

    分类目录:《深入浅出TensorFlow2函数》总目录 语法 参数 返回值 返回一个新的形状为 shape 的 tf.Tensor 且具有与 tensor 以同样的顺序和相同的值。 实例 输入: 如果 shape 的一个参数为是 -1 ,则计算该维度的大小,使总大小保持不变。特别是,若 shape 为 [-1] ,则将 tensor 展平为一

    2024年02月11日
    浏览(57)
  • 深入浅出TensorFlow2函数——tf.exp

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.exp · 深入浅出TensorFlow2函数——tf.math.exp · 深入浅出Pytorch函数——torch.exp · 深入浅出PaddlePaddle函数——paddle.exp 按元素计算 x x x 的指数 y = e x y=e^x y = e x 。 语法 参数 x :[ tf.Tensor ] 必须

    2024年02月12日
    浏览(30)
  • 深入浅出TensorFlow2函数——tf.rank

    分类目录:《深入浅出TensorFlow2函数》总目录 语法 参数 input : tf.Tensor 或 tf.SparseTensor name :[可选] 操作的名称 返回值 张量 input 的维度,是一个 int32 类型的张量 实例 输入: 输出: 函数实现

    2024年02月12日
    浏览(41)
  • Tensorflow2.0笔记 - tensor的合并和分割

            主要记录concat,stack,unstack和split相关操作的作用         运行结果:

    2024年01月23日
    浏览(30)
  • 深入浅出TensorFlow2函数——tf.Tensor

    分类目录:《深入浅出TensorFlow2函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.Tensor · 深入浅出Pytorch函数——torch.Tensor · 深入浅出PaddlePaddle函数——paddle.Tensor 一个 tf.Tensor 表示一个多维数组。在编写TensorFlow程序时,被操作和传递的主要对象就是 tf.Tensor 。 tf.Tens

    2024年02月17日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包