Opencv交通标志识别

这篇具有很好参考价值的文章主要介绍了Opencv交通标志识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

本文使用的数据集包含43种交通标志,使用opencv以及卷积神经网络训练模型,识别交通标志,使用pyqt5制作交通标志识别GUI的界面。

效果预览

如视频中所示,可以选择交通标志,然后可以进行图像预处理操作,如灰度化,边缘检测等,最后可以点击识别按钮进行识别。

交通标志识别

数据集下载地址

数据集中共包含43种交通标志!
数据集下载地址:https://pan.baidu.com/wap/init?surl=5v14ieSPZntBTDzKVckEgA
提取码:39q4

训练模型

下面是训练模型的代码文章来源地址https://www.toymoban.com/news/detail-509897.html

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.python.keras.utils.np_utils import to_categorical
from tensorflow.keras.layers import Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import cv2
from sklearn.model_selection import train_test_split
import pickle
import os
import pandas as pd
import random
from tensorflow.keras.preprocessing.image import ImageDataGenerator
################# Parameters #####################

path = "./data/myData"  # folder with all the class folders
labelFile = './data/labels.csv'  # file with all names of classes
batch_size_val = 50  # how many to process together
steps_per_epoch_val = 446  # 迭代次数
epochs_val = 10  # 整个训练集训练次数
imageDimesions = (32, 32, 3)  # 32*32的彩色图
testRatio = 0.2  # if 1000 images split will 200 for testing 测试集占比
validationRatio = 0.2  # if 1000 images 20% of remaining 800 will be 160 for validation 验证机占比
###################################################


############################### Importing of the Images 加载图像与标签
count = 0
images = []
classNo = []
myList = os.listdir(path)
print("Total Classes Detected:", len(myList))
noOfClasses = len(myList)
print("Importing Classes.....")
for x in range(0, len(myList)):
    myPicList = os.listdir(path + "/" + str(count))
    for y in myPicList:
        curImg = cv2.imread(path + "/" + str(count) + "/" + y)
        images.append(curImg)
        classNo.append(count)
    print(count, end=" ")
    count += 1
print(" ")
# 存着对应的图片信息和标签
images = np.array(images)
classNo = np.array(classNo)

############################### Split Data 分割test集和验证集
X_train, X_test, y_train, y_test = train_test_split(images, classNo, test_size=testRatio)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validationRatio)

# X_train = ARRAY OF IMAGES TO TRAIN
# y_train = CORRESPONDING CLASS ID

############################### TO CHECK IF NUMBER OF IMAGES MATCHES TO NUMBER OF LABELS FOR EACH DATA SET
print("Data Shapes")
print("Train", end="");
print(X_train.shape, y_train.shape)
print("Validation", end="");
print(X_validation.shape, y_validation.shape)
print("Test", end="");
print(X_test.shape, y_test.shape)
assert (X_train.shape[0] == y_train.shape[
    0]), "The number of images in not equal to the number of lables in training set"
assert (X_validation.shape[0] == y_validation.shape[
    0]), "The number of images in not equal to the number of lables in validation set"
assert (X_test.shape[0] == y_test.shape[0]), "The number of images in not equal to the number of lables in test set"
assert (X_train.shape[1:] == (imageDimesions

到了这里,关于Opencv交通标志识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Yolov8的中国交通标志(CCTSDB)识别检测系统

    目录 1.Yolov8介绍 2.纸箱破损数据集介绍 2.1数据集划分 2.2 通过voc_label.py得到适合yolov8训练需要的 2.3生成内容如下 3.训练结果分析          Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先

    2024年02月09日
    浏览(82)
  • Python交通标志识别基于卷积神经网络的保姆级教程(Tensorflow)

    项目介绍 TensorFlow2.X 搭建卷积神经网络(CNN),实现交通标志识别。搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。 其他项目 水果蔬菜识别:基于卷积神经网络的水果识别

    2024年02月05日
    浏览(91)
  • 基于深度学习的交通标志检测和识别(从原理到环境配置/代码运行)

    项目是一个基于Python和OpenCV的交通标志检测和识别项目,旨在使用计算机视觉和深度学习技术对交通标志进行检测和分类。本文将从介绍项目原理和框架开始,详细介绍该项目的实现过程和技术细节,最后给出项目的安装和使用方法。 Traffic-Sign-Detection项目的主要原理是使用

    2024年02月03日
    浏览(44)
  • 交通信号标志识别软件(Python+YOLOv5深度学习模型+清新界面)

    摘要:交通信号标志识别软件用于交通信号标志的检测和识别,利用机器视觉和深度学习智能识别交通标志并可视化记录,以辅助无人驾驶等。本文详细介绍交通信号标志识别软件,在介绍算法原理的同时,给出 P y t h o n 的实现代码以及 P y Q t 的UI界面。在界面中可以选择各

    2024年02月02日
    浏览(47)
  • 【目标检测】基于yolov5的交通标志检测和识别(附代码和数据集)

    写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 (专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的

    2024年02月04日
    浏览(59)
  • win下YOLOv7训练自己的数据集(交通标志TT100K识别)

    预测结果: 数据集的准备包括数据集适配YOLO格式的重新分配以及相应配置文件的书写,此处可查看博主的TT100K2yolo的重新分配博文,该文章包括数据集划分,配置文件书写,以及最终的数据集层级目录组织,可以直接提供给下一步进行训练。 需要注意的是数据集的yaml文件有

    2024年02月06日
    浏览(50)
  • Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头

    程序示例精选 Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头 如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助! 这篇博客针对《Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头》编写代码,代码整洁,规则,易读。 学习与应

    2024年02月03日
    浏览(35)
  • 【目标检测】基于yolov5的交通标志检测和识别(可识别58种类别,附代码和数据集)

    写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 (专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的

    2024年02月12日
    浏览(54)
  • 目标检测YOLO实战应用案例100讲-基于深度学习的交通标志小目标检测与识别研究

    目录 前言 目标检测算法相关理论  2.1 深度学习理论基础  2.1.2卷积神经网络 

    2024年02月11日
    浏览(50)
  • 基于深度学习的交通标志检测识别系统(含UI界面、yolov8、Python代码、数据集)

    项目中所用到的算法模型和数据集等信息如下: 算法模型:     yolov8     yolov8主要包含以下几种创新:         1. 添加注意力机制( SE 、 CBAM 等)         2. 修改可变形卷积( DySnake -主干 c3 替换、DySnake-所有c3替换) 数据集:     网上下载的数据集,详细介绍

    2024年03月09日
    浏览(84)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包