基于mediapipe识别手势所对应的数字(一、二、三、四、五)。
mediapipe的官网
总体思路:mediapipe可以识别手掌的关键点,我的思路是识别单根手指是否弯曲,然后根据五根手指的弯曲程度判断手势所对应的数字。
那怎么判断单根手指是否弯曲呢?
我是根据手指的四个关键点的相对位置。比如识别大拇指的弯曲程度,先计算点4和点3的角度a,再计算点2和点1的角度b,最后计算角度a和角度b的差值的绝对值,如果绝对值小于12度,则认为大拇指是伸直的。其他手指同理。
那怎么根据五根手指的弯曲程度判断手势所对应的数字呢?
假设已知五根手指的弯曲程度,若五根手指均伸直,则手势为数字五;若食指、中指、无名指、小指均伸直,而大拇指弯曲,则认为手势是数字四。其它手势同理。
文章来源:https://www.toymoban.com/news/detail-509960.html
代码如下:文章来源地址https://www.toymoban.com/news/detail-509960.html
import cv2
import mediapipe as mp
import time
import math
# 根据手指四个关节判断手指是否伸直
def get_angleError(point_4,point_3,point_2,point_1):
try:
point_4_cx, point_4_cy = int(point_4.x * w), int(point_4.y * h)
point_3_cx, point_3_cy = int(point_3.x * w), int(point_3.y * h)
point_2_cx, point_2_cy = int(point_2.x * w), int(point_2.y * h)
point_1_cx, point_1_cy = int(point_1.x * w), int(point_1.y * h)
angle_1 = math.degrees(math.atan((point_3_cx - point_4_cx) / (point_3_cy - point_4_cy)))
angle_2 = math.degrees(math.atan((point_1_cx - point_2_cx) / (point_1_cy - point_2_cy)))
angle_error = abs(angle_1 - angle_2)
if angle_error<12:
isStraight = 1
else:
isStraight = 0
except:
angle_error = 1000
isStraight = 0
return angle_error, isStraight
# 根据五根手指伸直程度识别手势
def getGesture(isStraight_list):
if isStraight_list[0]==0 and isStraight_list[1]==1 and isStraight_list[2]==0 and isStraight_list[3]==0 and isStraight_list[4]==0:
gesture = "one"
elif isStraight_list[0]==0 and isStraight_list[1]==1 and isStraight_list[2]==1 and isStraight_list[3]==0 and isStraight_list[4]==0:
gesture = "two"
elif isStraight_list[0]==0 and isStraight_list[1]==0 and isStraight_list[2]==1 and isStraight_list[3]==1 and isStraight_list[4]==1:
gesture = "three"
elif isStraight_list[0]==0 and isStraight_list[1]==1 and isStraight_list[2]==1 and isStraight_list[3]==1 and isStraight_list[4]==1:
gesture = "four"
elif isStraight_list[0]==1 and isStraight_list[1]==1 and isStraight_list[2]==1 and isStraight_list[3]==1 and isStraight_list[4]==1:
gesture = "five"
else:
gesture = "None"
return gesture
cap = cv2.VideoCapture(0)
mpHands = mp.solutions.hands
hands = mpHands.Hands(static_image_mode=False,
max_num_hands=2,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
mpDraw = mp.solutions.drawing_utils
pTime = 0
cTime = 0
while True:
success, img = cap.read()
img = cv2.flip(img, 1)
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(imgRGB)
#print(results.multi_hand_landmarks)
if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks:
for id, lm in enumerate(handLms.landmark):
#print(id,lm)
h, w, c = img.shape
cx, cy = int(lm.x *w), int(lm.y*h)
# print(cx,cy)
#if id ==0:
cv2.circle(img, (cx,cy), 3, (255,0,255), cv2.FILLED)
mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
# 判断拇指手势方向:
isStraight_list = []
point_4 = handLms.landmark[4]
point_3 = handLms.landmark[3]
point_2 = handLms.landmark[2]
point_1 = handLms.landmark[1]
angle_error_1, isStraight_1 = get_angleError(point_4,point_3,point_2,point_1)
print("isStraight_1:",isStraight_1)
isStraight_list.append(isStraight_1)
# 判断食指手势方向:
point_4 = handLms.landmark[8]
point_3 = handLms.landmark[7]
point_2 = handLms.landmark[6]
point_1 = handLms.landmark[5]
angle_error_2, isStraight_2 = get_angleError(point_4,point_3,point_2,point_1)
print("isStraight_2:",isStraight_2)
isStraight_list.append(isStraight_2)
# 判断中指手势方向:
point_4 = handLms.landmark[12]
point_3 = handLms.landmark[11]
point_2 = handLms.landmark[10]
point_1 = handLms.landmark[9]
angle_error_3, isStraight_3 = get_angleError(point_4,point_3,point_2,point_1)
print("isStraight_3:",isStraight_3)
isStraight_list.append(isStraight_3)
# 判断无名指手势方向:
point_4 = handLms.landmark[16]
point_3 = handLms.landmark[15]
point_2 = handLms.landmark[14]
point_1 = handLms.landmark[13]
angle_error_4, isStraight_4 = get_angleError(point_4,point_3,point_2,point_1)
print("isStraight_4:",isStraight_4)
isStraight_list.append(isStraight_4)
# 判断小指手势方向:
point_4 = handLms.landmark[20]
point_3 = handLms.landmark[19]
point_2 = handLms.landmark[18]
point_1 = handLms.landmark[17]
angle_error_5, isStraight_5 = get_angleError(point_4,point_3,point_2,point_1)
print("isStraight_5:",isStraight_5)
isStraight_list.append(isStraight_5)
# 根据五根手指的伸直程度判断手势所对应的数字
gesture = getGesture(isStraight_list)
print("gesture:",gesture)
cv2.putText(img, gesture, (10, 100), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 255), 3)
cTime = time.time()
fps = 1/(cTime-pTime)
pTime = cTime
# cv2.putText(img,str(int(fps)), (10,70), cv2.FONT_HERSHEY_PLAIN, 3, (255,0,255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1)
到了这里,关于基于mediapipe的手势数字识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!