5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

这篇具有很好参考价值的文章主要介绍了5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、DataX简介

1.1 DataX概述
DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

源码地址:https://github.com/alibaba/DataX

1.2 DataX支持的数据源

DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图。
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

2、DataX架构原理

2.1 DataX设计理念

为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

2.2 DataX框架设计

DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
Reader:数据采集模块,负责采集数据源的数据,将数据发送给Framework。
Writer:数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
Framework:用于连接Reader和Writer,作为两者的数据传输通道,并处理缓存,流控,并发,数据转换等核心技术问题。

2.3 DataX运行流程

下面用一个DataX作业生命周期的时序图说明DataX的运行流程、核心概念以及每个概念之间的关系。
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

2.4 DataX调度决策思路

举例来说,用户提交了一个DataX作业,并且配置了总的并发度为20,目的是对一个有100张分表的mysql数据源进行同步。DataX的调度决策思路是:
1)DataX Job根据分库分表切分策略,将同步工作分成100个Task。
2)根据配置的总的并发度20,以及每个Task Group的并发度5,DataX计算共需要分配4个TaskGroup。
3)4个TaskGroup平分100个Task,每一个TaskGroup负责运行25个Task。

2.5 DataX和Sqoop对比

5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

3、DataX部署

1、下载DataX安装包并上传到hadoop102的/opt/software
下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
2、解压datax.tar.gz到/opt/module

 tar -zxvf datax.tar.gz -C /opt/module/

3、自检,执行如下命令

 python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json

4、出现如下内容,则表明安装成功
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

4、DataX使用

4.1 DataX使用概述
4.1.1 DataX任务提交命令

Datax的使用十分简单,用户只需要根据自己同步数据的数据源和目的地选择相应的Reader和Writer,并将Reader和Writer的信息配置在一个json文件中,然后执行如下命令提交数据同步任务即可。

 python bin/datax.py path/to/your/job.json
4.1.2 DataX配置文件格式

可以使用如下命名查看DataX配置文件模板。

python bin/datax.py -r mysqlreader -w hdfswriter

配置文件模板如下,json最外层是一个job,job包含setting和content两部分,其中setting用于对整个job进行配置,content用户配置数据源和目的地。
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

4.2 同步MySQL数据到HDFS案例

案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录
需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据。
下面分别使用两种模式进行演示。

4.2.1 MySQLReader之TableMode

1、编写配置文件
(1)创建配置文件base_province.json

vim /opt/module/datax/job/base_province.json

(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "where": "id>=3",
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "table": [
                                    "base_province"
                                ]
                            }
                        ],
                        "password": "000000",
                        "splitPk": "",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

2、配置文件说明
(1)Reader参数说明
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
(2)Writer参数说明
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
注意事项:
HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(‘’),而Hive默认的null值存储格式为\N。所以后期将DataX同步的文件导入Hive表就会出现问题。
(3)Setting参数说明
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
3、提交任务
(1)在HDFS创建/base_province目录
使用DataX向HDFS同步数据时,需确保目标路径已存在

hadoop fs -mkdir /base_province

(2)进入DataX根目录
(3)执行如下命令

 python bin/datax.py job/base_province.json 

4、查看结果
(1)DataX打印日志
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
(2)查看HDFS文件

hadoop fs -cat /base_province/* | zcat
4.2.2 MySQLReader之QuerySQLMode

1、编写配置文件
(1)修改配置文件base_province.json
(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "querySql": [
                                    "select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"
                                ]
                            }
                        ],
                        "password": "000000",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

2、配置文件说明
(1)Reader参数说明
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
3、提交任务
(1)清空历史数据

 hadoop fs -rm -r -f /base_province/*

(2)进入DataX根目录
(3)执行如下命令

python bin/datax.py job/base_province.json

4、查看结果
(1)DataX打印日志
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
(2)查看HDFS文件

hadoop fs -cat /base_province/* | zcat
4.2.3 DataX传参

通常情况下,离线数据同步任务需要每日定时重复执行,故HDFS上的目标路径通常会包含一层日期,以对每日同步的数据加以区分,也就是说每日同步数据的目标路径不是固定不变的,因此DataX配置文件中HDFS Writer的path参数的值应该是动态的。为实现这一效果,就需要使用DataX传参的功能。
DataX传参的用法如下,在JSON配置文件中使用${param}引用参数,在提交任务时使用-p"-Dparam=value"传入参数值,具体示例如下。
1、编写配置文件
(1)修改配置文件base_province.json

(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "querySql": [
                                    "select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"
                                ]
                            }
                        ],
                        "password": "000000",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province/${dt}",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

2、提交任务
(1)创建目标路径

 hadoop fs -mkdir /base_province/2020-06-14

(2)进入DataX根目录
(3)执行如下命令

 python bin/datax.py -p"-Ddt=2020-06-14" job/base_province.json

3、查看结果

hadoop fs -ls /base_province
4.3 同步HDFS数据到MySQL案例

案例要求:同步HDFS上的/base_province目录下的数据到MySQL gmall 数据库下的test_province表。
需求分析:要实现该功能,需选用HDFSReader和MySQLWriter。
1、编写配置文件
(1)创建配置文件test_province.json
(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "hdfsreader",
                    "parameter": {
                        "defaultFS": "hdfs://hadoop102:8020",
                        "path": "/base_province",
                        "column": [
                            "*"
                        ],
                        "fileType": "text",
                        "compress": "gzip",
                        "encoding": "UTF-8",
                        "nullFormat": "\\N",
                        "fieldDelimiter": "\t",
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                        "username": "root",
                        "password": "000000",
                        "connection": [
                            {
                                "table": [
                                    "test_province"
                                ],
                                "jdbcUrl": "jdbc:mysql://hadoop102:3306/gmall?useUnicode=true&characterEncoding=utf-8"
                            }
                        ],
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "writeMode": "replace"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

2、配置文件说明
(1)Reader参数说明
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
(2)Writer参数说明
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
3、提交任务
(1)在MySQL中创建gmall.test_province表

DROP TABLE IF EXISTS `test_province`;
CREATE TABLE `test_province`  (
  `id` bigint(20) NOT NULL,
  `name` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `region_id` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `area_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_3166_2` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

(2)进入DataX根目录
(3)执行如下命令

 python bin/datax.py job/test_province.json 

4、查看结果
(1)DataX打印日志
(2)查看MySQL目标表数据
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

5、DataX优化

5.1 速度控制

DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在数据库可以承受的范围内达到最佳的同步速度。
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)
注意事项:
1.若配置了总record限速,则必须配置单个channel的record限速
2.若配置了总byte限速,则必须配置单个channe的byte限速
3.若配置了总record限速和总byte限速,channel并发数参数就会失效。因为配置了总record限速和总byte限速之后,实际channel并发数是通过计算得到的:
计算公式为:
min(总byte限速/单个channel的byte限速,总record限速/单个channel的record限速)

5.2 内存调整

当提升DataX Job内Channel并发数时,内存的占用会显著增加,因为DataX作为数据交换通道,在内存中会缓存较多的数据。例如Channel中会有一个Buffer,作为临时的数据交换的缓冲区,而在部分Reader和Writer的中,也会存在一些Buffer,为了防止OOM等错误,需调大JVM的堆内存。
建议将内存设置为4G或者8G,这个也可以根据实际情况来调整。
调整JVM xms xmx参数的两种方式:一种是直接更改datax.py脚本;另一种是在启动的时候,加上对应的参数,如下:
python datax/bin/datax.py --jvm=“-Xms8G -Xmx8G” /path/to/your/job.json文章来源地址https://www.toymoban.com/news/detail-510480.html

到了这里,关于5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • DolphinScheduler 调度 DataX 实现 MySQL To ElasticSearch 增量数据同步实践

    基于SQL查询的 CDC(Change Data Capture): 离线调度查询作业,批处理。把一张表同步到其他系统,每次通过查询去获取表中最新的数据。也就是我们说的基于SQL查询抽取; 无法保障数据一致性,查的过程中有可能数据已经发生了多次变更; 不保障实时性,基于离线调度存在天然的

    2024年02月03日
    浏览(43)
  • DataX将MySQL数据同步到HDFS中时,空值不处理可以吗

    DataX将MySQL数据同步到HDFS中时,空值(NULL)存到HDFS中时,默认是存储为空字符串(‘’)。 HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(‘’),而Hive默认的null值存储格式为N。所以

    2024年02月12日
    浏览(47)
  • 【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步

    【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述  【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门   【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图 【大数据进阶第三阶段之Datax学习笔记】使

    2024年01月24日
    浏览(55)
  • DataX mysql同步到mysql

    创建数据源 配置数据库相关信息 创建执行器 配置执行器执行地址相关信息 1.1 SQL语句 (querySql) 在json文件中此部分配置就是 querySql 在有些业务场景下,where这一配置项不足以描述所筛选的条件,用户可以通过该配置型来自定义筛选SQL。当用户配置了这一项之后,DataX系统就

    2024年02月09日
    浏览(30)
  • Datax同步MySQL到ES

    建表语句 插入数据 建立索引语句 我这里使用Kibana工具连接ES进行操作的,也可以使用Postman进行操作 Kibana操作语句 Postman操作语句 地址输入 Json文本输入 当出现以下信息代表创建索引成功 参数介绍 reader:datax的source(来源)端 reader.cloumn::读取mysql的字段名 reader.connection.jdbcU

    2024年02月13日
    浏览(33)
  • 业务数据同步工具介绍和使用(Sqoop、Datax、Canal、MaxWell、Flink CDC)

    介绍 Sqoop : SQ L-to-Had oop ( Apache已经终止Sqoop项目 ) 用途:把关系型数据库的数据转移到HDFS(Hive、Hbase)(重点使用的场景);Hadoop中的数据转移到关系型数据库中。Sqoop是java语言开发的,底层使用 mapreduce 。 需要注意的是,Sqoop主要使用的是Map,是数据块的转移,没有使

    2024年02月15日
    浏览(76)
  • DATAX的架构和运行原理

      DATAX呢就是把各个不同构的数据库进行同步的过程,具体有hdfs hive Oracle 等等吧。 显而易见从强连通图到星形图,大大的简化了工作量。 2.框架设计,变成了FrameWork和plugin的形式,以读者写者的方式(reader writer)进行数据的同步吧。 DataX在设计之初就将同步理念抽象成框架

    2024年01月23日
    浏览(34)
  • Redis主从架构、数据同步原理、全量同步、增量同步

    大家好,我是哪吒。 2023年再不会Redis,就要被淘汰了 图解Redis,谈谈Redis的持久化,RDB快照与AOF日志 Redis单线程还是多线程?IO多路复用原理 Redis集群的最大槽数为什么是16384个? Redis缓存穿透、击穿、雪崩到底是个啥?7张图告诉你 Redis分布式锁的实现方式 Redis分布式缓存、

    2024年02月07日
    浏览(64)
  • DataX-阿里开源离线同步工具在Windows上实现Sqlserver到Mysql全量同步和增量同步

    Kettle-开源的ETL工具集-实现SqlServer到Mysql表的数据同步并部署在Windows服务器上: Kettle-开源的ETL工具集-实现SqlServer到Mysql表的数据同步并部署在Windows服务器上_etl实现sqlserver报表服务器_霸道流氓气质的博客-CSDN博客 上面讲过Kettle的使用,下面记录下阿里开源异构数据源同步工具

    2024年02月08日
    浏览(46)
  • 使用DataX对MySQL 8.1进行数据迁移

    这里采用直接下载的方式:https://datax-opensource.oss-cn-hangzhou.aliyuncs.com/202308/datax.tar.gz,不过这个包是真的有点大。 Python下载地址:https://www.python.org/downloads/ 安装的时候添加到PATH,这样后面不用再配置环境变量。 安装完成之后验证下: DataX中可以给咱们生成示例的脚本: 比如

    2024年02月10日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包