【斯坦福】FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能

这篇具有很好参考价值的文章主要介绍了【斯坦福】FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能
作者:Lingjiao Chen, Matei Zaharia, James Zou

引言

本文介绍了一种新颖的方法,旨在解决使用大型语言模型(LLM)时面临的成本和性能挑战。随着GPT-4和ChatGPT等LLM的日益流行,我们需要找到降低这些模型推理成本的策略。作者强调了LLM API的异构定价结构以及使用最大的LLM所带来的巨大财务、环境和能源影响。

问题陈述

使用LLM进行高吞吐量应用可能非常昂贵。例如,ChatGPT的运营成本估计每天超过70万美元,而使用GPT-4支持客户服务可能会给小型企业带来每月2.1万美元的费用。此外,使用最大的LLM还会带来可观的环境和能源影响。因此,我们需要一种方法来降低LLM的推理成本,同时保持良好的性能。

FrugalGPT的解决方案

为了解决这个问题,作者提出了FrugalGPT,这是一种简单而灵活的LLM级联方法。FrugalGPT通过学习在不同查询中使用不同LLM组合的方式,以降低成本并提高准确性。
【斯坦福】FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能
具体而言,FrugalGPT包括三种策略:提示适应、LLM近似和LLM级联。
【斯坦福】FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能

提示适应

提示适应是一种通过识别有效的提示来节省成本的方法。通过精心设计的提示,可以减少LLM的推理成本。例如,使用较短的提示可以降低成本,而不会显著影响性能。

LLM近似

LLM近似旨在创建更简单、更便宜的LLM,以在特定任务上与强大但昂贵的LLM相匹配。通过降低模型的复杂性和规模,可以降低成本,同时保持合理的性能。

LLM级联

LLM级联是一种自适应选择不同LLM API的方法,以适应不同查询。通过根据查询的特性选择合适的LLM组合,可以降低成本并提高准确性。

实验结果

作者通过实验证明了FrugalGPT的有效性。实验结果显示,FrugalGPT可以在与最佳单个LLM相当的性能下,降低高达98%的推理成本。此外,FrugalGPT还可以在相同成本下提高4%的准确性。这些结果表明,FrugalGPT是一种可行的方法,可以在降低成本的同时提高性能。文章来源地址https://www.toymoban.com/news/detail-510887.html

到了这里,关于【斯坦福】FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 足够惊艳,使用Alpaca-Lora基于LLaMA(7B)二十分钟完成微调,效果比肩斯坦福羊驼

    之前尝试了 从0到1复现斯坦福羊驼(Stanford Alpaca 7B) ,Stanford Alpaca 是在 LLaMA 整个模型上微调,即对预训练模型中的所有参数都进行微调(full fine-tuning)。但该方法对于硬件成本要求仍然偏高且训练低效。 因此, Alpaca-Lora 则是利用 Lora 技术,在冻结原模型 LLaMA 参数的情况下

    2024年02月03日
    浏览(46)
  • 笔记汇总 | 斯坦福 CS229 机器学习

    本文为斯坦福大学 CS229 机器学习课程学习笔记 本文主体部分转载自黄海广博士,文末已给出链接,大家有兴趣可以直接访问笔记首页,下载对应课程资料及作业代码 课程官网:CS229: Machine Learning (stanford.edu) 课程视频:Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2

    2024年02月14日
    浏览(42)
  • LLaMA模型微调版本:斯坦福 Alpaca 详解

    项目代码:https://github.com/tatsu-lab/stanford_alpaca 博客介绍:https://crfm.stanford.edu/2023/03/13/alpaca.html Alpaca 是 LLaMA-7B 的微调版本,使用Self-instruct[2]方式借用text-davinct-003构建了52K的数据,同时在其构建策略上做了一些修改。 性能上作者对Alpaca进行了评估,与openai的text-davinct-003模型在

    2024年02月16日
    浏览(42)
  • 斯坦福人生设计课——简略笔记(未完待更新)

    来源: ⽐尔 · 博内特 戴夫 · 伊万斯 著图书《人生设计课》 目录 一、认清当下的情况,从四个维度观察自己的人生 二、平衡人生,但不要走入误区 2.1 记录你的“美好时光日志”: 2.1.1 记录内容: 2.1.2 辅助反思的方法:AEIOU方法 2.1.3 一个小TIPS: 2.1.4 如果你发现自己当下

    2024年02月11日
    浏览(42)
  • 【LLM系列】00:斯坦福 Alpaca 模型介绍及其复现

    西风吹老洞庭波,一夜湘君白发多。醉后不知天在水,满船清梦压星河。小伙伴好,我是微信公众号《小窗幽记机器学习》的小编:卖核弹的小女孩。更多、更新文章欢迎关注微信公众号:小窗幽记机器学习。后续会持续输出模型推理加速、工程部署、LLM、AI艺术等系列,敬

    2024年02月13日
    浏览(48)
  • 自驱力超强的羊驼?斯坦福微调LLaMa

    大型“指令调优”语言模型在新任务上展现了Zero-shot的卓越能力,但严重依赖于人类编写的指令数据,而这些数据在数量、多样性和创造性方面都是有限的。 斯坦福科研人员引入了self-instruction框架,提高指令遵循能力来自我迭代进化,与InstructGPT的性能相当,相比原始GPT3提

    2024年02月09日
    浏览(43)
  • 斯坦福| ChatGPT用于生成式搜索引擎的可行性

    文|智商掉了一地 随着 ChatGPT 在文本生成领域迈出了重要一步,Bing 浏览器也接入了聊天机器人功能,因此如何保证 Bing Chat 等搜索引擎结果的精确率和真实性也成为了搜索领域的热门话题之一。 当我们使用搜索引擎时,往往希望搜索结果能够真实准确地反映我们的需求。然

    2024年02月06日
    浏览(41)
  • 斯坦福Dan Boneh密码学——02 计算密码与语义安全

    语义安全这块内容实在是被书绕晕了,虽然模型就那么一个,但有各种各样的数学符号交织证明,还有官方深奥的语言表述。第一次看是一知半解的,后面势必还要再返回来精读几遍完善笔记。以篇幅来看,语义安全是密码学中非常重要的一个版块。 计算密码与语义安全 我

    2024年02月08日
    浏览(67)
  • 斯坦福 Stats60:21 世纪的统计学:前言到第四章

    原文: statsthinking21.github.io/statsthinking21-core-site/index.html 译者:飞龙 协议:CC BY-NC-SA 4.0 这本书的目标是讲述统计学的故事,以及它如何被全球的研究人员所使用。这是一个与大多数统计学入门书籍中讲述的故事不同的故事,后者侧重于教授如何使用一套工具来实现非常具体的

    2024年01月18日
    浏览(50)
  • 大模型也内卷,Vicuna训练及推理指南,效果碾压斯坦福羊驼

    2023开年以来,大模型进入疯狂内卷状态,大模型的发布都要以“天”为单位进行迭代。 之前,尝试了 从0到1复现斯坦福羊驼(Stanford Alpaca 7B) ,下面我们来尝试从0到1复现Vicuna训练及推理。 继斯坦福羊驼(Stanford Alpaca)之后,UC伯克利、CMU、斯坦福等机构的学者,联手发布

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包