在 C++11 中不仅添加了线程类,还添加了一个关于线程的命名空间 std::this_thread,在这个命名空间中提供了四个公共的成员函数
,通过这些成员函数就可以对当前线程进行相关的操作了
1. get_id()
调用命名空间 std::this_thread 中的 get_id()
方法可以得到当前
线程的线程 ID
,函数原型如下:
thread::id get_id() noexcept;
关于函数使用对应的示例代码如下:
#include <iostream>
#include <thread>
using namespace std;
void func()
{
cout << "子线程: " << this_thread::get_id() << endl;
}
int main()
{
cout << "主线程: " << this_thread::get_id() << endl;
thread t(func);
t.join();
}
程序启动,开始执行 main() 函数,此时只有一个线程也就是主线程。当创建了子线程对象 t 之后,指定的函数 func() 会在子线程中执行,这时通过调用 this_thread::get_id()
就可以得到当前线程的线程 ID 了。
2. sleep_for()
同样地线程被创建后也有这五种状态:创建态,就绪态,运行态,阻塞态(挂起态),退出态(终止态) ,关于状态之间的转换是一样的,请参考进程,在此不再过多的赘述。
线程和进程的执行有很多相似之处,在计算机中启动的多个线程都需要占用 CPU 资源,但是 CPU 的个数是有限的并且每个 CPU 在同一时间点不能同时处理多个任务。·为了能够实现并发处理,多个线程都是分时复用CPU时间片,快速的交替处理各个线程中的任务·。因此多个线程之间需要争抢CPU时间片
,抢到了就执行,抢不到则无法执行(因为默认所有的线程优先级都相同,内核也会从中调度,不会出现某个线程永远抢不到 CPU 时间片的情况)。
命名空间 this_thread 中提供了一个休眠函数 sleep_for()
,调用这个函数的线程会马上从运行态变成阻塞态
并在这种状态下休眠一定的时长,因为阻塞态的线程已经让出了 CPU 资源
,代码也不会被执行,所以线程休眠过程中对 CPU 来说没有任何负担。这个函数是函数原型如下,参数需要指定一个休眠时长,是一个时间段:
template <class Rep, class Period>
void sleep_for (const chrono::duration<Rep,Period>& rel_time);
示例程序如下:
#include <iostream>
#include <thread>
#include <chrono>
using namespace std;
void func()
{
for (int i = 0; i < 10; ++i)
{
this_thread::sleep_for(chrono::seconds(1));
cout << "子线程: " << this_thread::get_id() << ", i = " << i << endl;
}
}
int main()
{
thread t(func);
t.join();
}
在 func() 函数的 for 循环中使用了 this_thread::sleep_for(chrono::seconds(1)); 之后,每循环一次程序都会阻塞 1 秒钟,也就是说每隔 1 秒才会进行一次输出。需要注意的是:程序休眠完成之后,会从阻塞态重新变成就绪态,就绪态的线程需要再次争抢 CPU 时间片,抢到之后才会变成运行态,这时候程序才会继续向下运行
。
3. sleep_until()
命名空间 this_thread 中提供了另一个休眠函数 sleep_until(),和 sleep_for() 不同的是它的参数类型不一样
- sleep_until():指定线程
阻塞到某一个指定的时间点 time_point类型
,之后解除阻塞 - sleep_for():指定线程
阻塞一定的时间长度 duration
类型,之后解除阻塞
该函数的函数原型如下:
template <class Clock, class Duration>
void sleep_until (const chrono::time_point<Clock,Duration>& abs_time);
示例程序如下:
#include <iostream>
#include <thread>
#include <chrono>
using namespace std;
void func()
{
for (int i = 0; i < 10; ++i)
{
// 获取当前系统时间点
auto now = chrono::system_clock::now();
// 时间间隔为2s
chrono::seconds sec(2);
// 当前时间点之后休眠两秒
this_thread::sleep_until(now + sec);
cout << "子线程: " << this_thread::get_id() << ", i = " << i << endl;
}
}
int main()
{
thread t(func);
t.join();
}
sleep_until() 和 sleep_for()
函数的功能是一样的,只不过前者是基于时间点去阻塞线程,后者是基于时间段去阻塞线程,项目开发过程中根据实际情况选择最优的解决方案即可。
4. yield()
命名空间 this_thread 中提供了一个非常绅士的函数 yield()
,在线程中调用这个函数之后,处于运行态的线程会主动让出自己已经抢到的 CPU 时间片,最终变为就绪态
,这样其它的线程就有更大的概率能够抢到 CPU 时间片了。使用这个函数的时候需要注意一点,线程调用了 yield () 之后会主动放弃 CPU 资源但是这个变为就绪态的线程会马上参与到下一轮 CPU 的抢夺战中
,不排除它能继续抢到 CPU 时间片的情况,这是概率问题。
void yield() noexcept;
函数对应的示例程序如下:
#include <iostream>
#include <thread>
using namespace std;
void func()
{
for (int i = 0; i < 100000000000; ++i)
{
cout << "子线程: " << this_thread::get_id() << ", i = " << i << endl;
this_thread::yield();
}
}
int main()
{
thread t(func);
thread t1(func);
t.join();
t1.join();
}
在上面的程序中,执行 func() 中的 for 循环会占用大量的时间,在极端情况下,如果当前线程占用 CPU 资源不释放就会导致其他线程中的任务无法被处理,或者该线程每次都能抢到 CPU 时间片,导致其他线程中的任务没有机会被执行。解决方案就是每执行一次循环,让该线程主动放弃 CPU 资源,重新和其他线程再次抢夺 CPU 时间片,如果其他线程抢到了 CPU 时间片就可以执行相应的任务了。文章来源:https://www.toymoban.com/news/detail-510943.html
结论:
std::this_thread::yield() 的目的是避免一个线程长时间占用CPU资源,从而导致多线程处理性能下降
std::this_thread::yield() 是让当前线程主动放弃了当前自己抢到的CPU资源,但是在下一轮还会继续抢
文章来源地址https://www.toymoban.com/news/detail-510943.html
到了这里,关于c++ 多线程: this_thread的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!