Flink CDC2.4 整库实时同步MySql 到Doris

这篇具有很好参考价值的文章主要介绍了Flink CDC2.4 整库实时同步MySql 到Doris。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

环境

        Flink 1.15.4 

实现原因

        目前有很多工具都支持无代码实现Mysql -> Doris 的实时同步

        如:SlectDB 已发布的功能包

                Dinky SeaTunnel TIS 等等

         不过好多要么不支持表结构变动,要不不支持多sink,我们的业务必须支持对表结构的实时级变动,因为会对表字段级别的修改,字段类型更改,字段名字更改删除添加等

        所以要支持整库同步且又要表结构的实时变动就要自己写

                

所需jar

        flink-doris-connector-1.15-1.4.0.jar  -- 实现一键万表同步

        flink-sql-connector-mysql-cdc-2.4.0.jar --包含所有相关依赖,无需在导入debezium、cdc等等

流程

        1、脚本创建库表

        2、同步表结构程序  

        3、Flink cdc 程序

对比第一版本:使用 Flink CDC 实现 MySQL 数据,表结构实时入 Apache Doris 效率有所提升

        首次同步时keyby 后开窗聚合导致数据倾斜

        聚合数据有字符串拼接改为JsonArray 避免聚合导致背压,字符串在数据量较大时拼接效率太低

Flink cdc 代码

        1、FlinkSingleSync.scala

        文章来源地址https://www.toymoban.com/news/detail-510972.html

package com.zbkj.sync

import com.alibaba.fastjson2.{JSON, JSONObject,JSONArray}
import com.ververica.cdc.connectors.mysql.source.MySqlSource
import com.ververica.cdc.connectors.mysql.table.StartupOptions
import com.ververica.cdc.connectors.shaded.org.apache.kafka.connect.json.JsonConverterConfig
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema
import com.zbkj.util.SinkBuilder.getKafkaSink
import com.zbkj.util._
import org.apache.flink.api.common.eventtime.WatermarkStrategy
import org.apache.flink.api.common.restartstrategy.RestartStrategies
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
import org.apache.flink.streaming.api.{CheckpointingMode, TimeCharacteristic}
import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.scala._

import java.util.Properties

object FlinkSingleSync {

  PropertiesManager.initUtil()
  val props: PropertiesUtil = PropertiesManager.getUtil

  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    // 并行度
    env.setParallelism(props.parallelism)
    env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)
    
    val parameters: ParameterTool = ParameterTool.fromArgs(args)
    val memberID = parameters.getInt("memberID", 0)
    val source = parameters.get("source", "")
    val log = parameters.getBoolean("log", true)
    if (memberID == 0) {
      sys.exit(0)
    }
    val thisMember = "ttk_member_%d".format(memberID)
    val jobName = "Sync Member %d".format(memberID)
    val syncTopic = "sync_data_%d".format(memberID)
    println(syncTopic)
    val sourceFormat = SourceFormat.sourceFormat(source)

    env.setParallelism(4)
    /**
     * checkpoint的相关设置 */
    // 启用检查点,指定触发checkpoint的时间间隔(单位:毫秒,默认500毫秒),默认情况是不开启的
    env.enableCheckpointing(1000L, CheckpointingMode.EXACTLY_ONCE)
    // 设定Checkpoint超时时间,默认为10分钟
    env.getCheckpointConfig.setCheckpointTimeout(600000)

    /**
     * 设置检查点路径 */
    env.getCheckpointConfig.setCheckpointStorage("file:///data/flink-checkpoints/sync/%d".format(memberID))

    /** 设定两个Checkpoint之间的最小时间间隔,防止出现例如状态数据过大而导致Checkpoint执行时间过长,从而导致Checkpoint积压过多
     * 最终Flink应用密切触发Checkpoint操作,会占用了大量计算资源而影响到整个应用的性能(单位:毫秒) */
    env.getCheckpointConfig.setMinPauseBetweenCheckpoints(60000)
    // 默认情况下,只有一个检查点可以运行
    // 根据用户指定的数量可以同时触发多个Checkpoint,进而提升Checkpoint整体的效率
    //env.getCheckpointConfig.setMaxConcurrentCheckpoints(2)
    /** 外部检查点
     * 不会在任务正常停止的过程中清理掉检查点数据,而是会一直保存在外部系统介质中,另外也可以通过从外部检查点中对任务进行恢复 */
    env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)


    //    env.getCheckpointConfig.setPreferCheckpointForRecovery(true)
    // 设置可以允许的checkpoint失败数
    env.getCheckpointConfig.setTolerableCheckpointFailureNumber(3)
    //设置可容忍的检查点失败数,默认值为0表示不允许容忍任何检查点失败
    env.getCheckpointConfig.setTolerableCheckpointFailureNumber(2)
    env.disableOperatorChaining()

    /**
     * 重启策略的配置
     * 重启3次,每次失败后等待10000毫秒
     */
    env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 30000L))

    val dataBaseList = thisMember
    var tableList = thisMember + ".*"
    if (!log) {
      tableList = "lb_crm_customer_log|.*(?<!_log)$"
    }

    val dorisStreamLoad = new DorisStreamLoad2(props)

    // numeric 类型转换
    val customConverterConfigs = new java.util.HashMap[String, Object] {
      put(JsonConverterConfig.DECIMAL_FORMAT_CONFIG, "numeric")
    }
    /**
     * mysql source for doris */
    println(dataBaseList, tableList)
    val debeziumProps = new Properties()
    debeziumProps.setProperty("debezium.snapshot.mode","never")
    val mysqlSource = MySqlSource.builder[String]()
      .hostname(sourceFormat.getString("sourceHost"))
      .port(sourceFormat.getIntValue("sourcePort"))
      .databaseList(dataBaseList)
      //^((?!lb_admin_log|lb_bugs).)*$
      // lb_admin_log、lb_bugs为不需要同步表
      .tableList(props.regular_expression)
      .username(sourceFormat.getString("sourceUsername"))
      .password(sourceFormat.getString("sourcePassword"))
      .debeziumProperties(debeziumProps)
      // 全量读取
      .startupOptions(StartupOptions.initial())
      .includeSchemaChanges(true)
      // 发现新表,加入同步任务,需要在tableList中配置
      .scanNewlyAddedTableEnabled(true)
      .deserializer(new JsonDebeziumDeserializationSchema(false, customConverterConfigs)).build()

    val streamSource: DataStream[JSONObject] = env.fromSource(mysqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")
      .map(line => JSON.parseObject(line)).setParallelism(4)

    val DDLSqlStream: DataStream[JSONObject] = streamSource.filter(line => !line.containsKey("op")).uid("ddlSqlStream")
    val DMLStream: DataStream[JSONObject] = streamSource.filter(line => line.containsKey("op")).uid("dmlStream")
    /**
     * 首次全量同步时 时间窗口内几乎为一个表数据,此时下面操作会数据倾斜
     * 在binLogETLOne 中对表加随机数后缀 使其均匀分布
     * 聚合操作之后再将tableName转换为实际表
     */
    val DMLDataStream = FlinkCDCSyncETL.binLogETLOne(DMLStream)
    val keyByDMLDataStream:DataStream[(String, String, String, JSONArray)] = DMLDataStream.keyBy(keys => (keys._1, keys._2, keys._3))
      .timeWindow(Time.milliseconds(props.window_time_milliseconds))
      .reduce((itemFirst, itemSecond) => (itemFirst._1, itemFirst._2, itemFirst._3,combineJsonArray(itemFirst._4,itemSecond._4)))
      .map(line=>(line._1,line._2,line._3.split("-")(0),line._4))
      .name("分组聚合").uid("keyBy")


    keyByDMLDataStream.addSink(new SinkDoris(dorisStreamLoad)).name("数据写入Doris").uid("SinkDoris").setParallelism(4)

    val DDLKafkaSink=getKafkaSink("schema_change")
    DDLSqlStream.map(jsObj => jsObj.toJSONString()).sinkTo(DDLKafkaSink).name("同步DDL入Kafka").uid("SinkDDLKafka")
    
    val kafkaSink=getKafkaSink(syncTopic)
    keyByDMLDataStream.map(line=>(line._2,line._3,1)).filter(!_._2.endsWith("_sql"))
      .keyBy(keys => (keys._1, keys._2))
      .window(TumblingProcessingTimeWindows.of(Time.seconds(1))).sum(2)
      .map(line =>{
        val json = new JSONObject()
        json.put("member_id", line._1)
        json.put("table", line._2)
        json.toJSONString()
      }).sinkTo(kafkaSink).name("同步数据库表入Kafka").uid("syncDataTableToKafka")

    env.execute(jobName)
    
  }
  
  def combineJsonArray(jsr1:JSONArray,jsr2:JSONArray): JSONArray ={
    jsr1.addAll(jsr2)
    jsr1
  }

}

2.FlinkCDCSyncETL.scala

package com.zbkj.util

import com.alibaba.fastjson2.{JSON, JSONArray, JSONObject}
import org.apache.flink.api.scala.createTypeInformation
import org.apache.flink.streaming.api.scala.DataStream

import java.util.Random

object FlinkCDCSyncETL {

  def binLogETLOne(dataStreamSource: DataStream[JSONObject]): DataStream[(String, String, String, JSONArray)] = {
    /**
     * 根据不同日志类型 匹配load doris方式
     */
    val tupleData: DataStream[(String, String, String, JSONArray)] = dataStreamSource.map(line => {
      var data: JSONObject = new JSONObject()
      var jsr: JSONArray = new JSONArray()
      var mergeType = "APPEND"
      val source = line.getJSONObject("source")
      val db = source.getString("db")
      val table = source.getString("table")
      val op=line.getString("op")
      if ("d" == op) {
        data = line.getJSONObject("before")
        mergeType = "DELETE"
      } else if ("u" == op) {
        data = line.getJSONObject("after")
        mergeType = "APPEND"
      } else if ("c" == op) {
        data = line.getJSONObject("after")
      } else if ("r" == op) {
        data = line.getJSONObject("after")
        mergeType = "APPEND"
      }
      jsr.add(data)
      Tuple4(mergeType, db, table+ "-" + new Random().nextInt(4), jsr)
    })
    tupleData
  }



}

3.DorisStreamLoad2.scala

package com.zbkj.util

import org.apache.doris.flink.exception.StreamLoadException
import org.apache.doris.flink.sink.HttpPutBuilder
import org.apache.http.client.methods.CloseableHttpResponse
import org.apache.http.entity.StringEntity
import org.apache.http.impl.client.{DefaultRedirectStrategy, HttpClientBuilder, HttpClients}
import org.apache.http.util.EntityUtils
import org.slf4j.{Logger, LoggerFactory}

import java.util.{Properties, UUID}

class DorisStreamLoad2(props: PropertiesUtil) extends Serializable {
  private val logger: Logger = LoggerFactory.getLogger(classOf[DorisStreamLoad2])

  private lazy val httpClientBuilder: HttpClientBuilder = HttpClients.custom.setRedirectStrategy(new DefaultRedirectStrategy() {
    override protected def isRedirectable(method: String): Boolean = {
      // If the connection target is FE, you need to deal with 307 redirect。
      true
    }
  })


  def loadJson(jsonData: String, mergeType: String, db: String, table: String): Unit = try {
    val loadUrlPattern = "http://%s/api/%s/%s/_stream_load?"
    val entity = new StringEntity(jsonData, "UTF-8")
    val streamLoadProp = new Properties()
    streamLoadProp.setProperty("merge_type", mergeType)
    streamLoadProp.setProperty("format", "json")
    streamLoadProp.setProperty("column_separator", ",")
    streamLoadProp.setProperty("line_delimiter", ",")
    streamLoadProp.setProperty("strip_outer_array", "true")
    streamLoadProp.setProperty("exec_mem_limit", "6442450944")
    streamLoadProp.setProperty("strict_mode", "true")
    val httpClient = httpClientBuilder.build
    val loadUrlStr = String.format(loadUrlPattern, props.doris_load_host, db, table)
    try {
      val builder = new HttpPutBuilder()
      val label = UUID.randomUUID.toString
      builder.setUrl(loadUrlStr)
        .baseAuth(props.doris_user, props.doris_password)
        .addCommonHeader()
        .setLabel(label)
        .setEntity(entity)
        .addProperties(streamLoadProp)
      handlePreCommitResponse(httpClient.execute(builder.build()))
    }

    def handlePreCommitResponse(response: CloseableHttpResponse): Unit = {
      val statusCode: Int = response.getStatusLine.getStatusCode
      if (statusCode == 200 && response.getEntity != null) {
        val loadResult: String = EntityUtils.toString(response.getEntity)
        logger.info("load Result {}", loadResult)
      } else {
        throw new StreamLoadException("stream load error: " + response.getStatusLine.toString)
      }


    }


  }
}

4.SinkDoris.scala

package com.zbkj.util

import com.alibaba.fastjson2.JSONArray
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction

class SinkDoris(dorisStreamLoad:DorisStreamLoad2) extends RichSinkFunction[(String, String, String, JSONArray)]  {


  override def open(parameters: Configuration): Unit = {}
  /**
   * 每个元素的插入都要调用一次invoke()方法进行插入操作
   */
  override def invoke(value:(String, String, String, JSONArray)): Unit = {
    dorisStreamLoad.loadJson(value._4.toString,value._1,value._2,value._3)
  }

  override def close(): Unit = {}
}

到了这里,关于Flink CDC2.4 整库实时同步MySql 到Doris的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink实时同步MySQL与Doris数据

    技术解析|Doris Connector 结合 Flink CDC 实现 MySQL 分库分表 Exactly Once 精准接入-阿里云开发者社区 1. Flink环境: https://flink.apache.org/zh/ 下载flink-1.15.1 解压,修改配置 修改配置 修改rest.bind-address为 0.0.0.0 下载依赖jar包 至 flink安装目录lib下 启动flink 访问WebUI http://192.168.0.158:8081 2、

    2024年02月13日
    浏览(45)
  • 基于Flink CDC实时同步数据(MySQL到MySQL)

    jdk8 Flink 1.16.1(部署在远程服务器:192.168.137.99) Flink CDC 2.3.0 MySQL 8.0(安装在本地:192.168.3.31) (安装部署过程略) 准备三个数据库:flink_source、flink_sink、flink_sink_second。 将flink_source.source_test表实时同步到flink_sink和flink_sink_second的sink_test表。 (建库建表过程略) 开发过程

    2024年02月06日
    浏览(104)
  • flink cdc MySQL2Doris 案例分享 解决分库多表同步

    使用flink cdc,完成mysql 多库 多表同时同步到doris中 flink 1.14.4 doris 1.1.0 flink-connector-mysql-cdc 2.2.1版本 一直会报异常 java.lang.NoClassDefFoundError: org/apache/flink/shaded/guava18/com/google/common/util/concurrent/ThreadFactoryBuilder 从官网下载依赖,然后本地添加进去flink-sql-connector-mysql-cdc-2.2.0 由于 U

    2023年04月09日
    浏览(45)
  • Flink 内容分享(二十一):通过Flink CDC一键整库同步MongoDB到Paimon

    目录 导言 Paimon CDC Demo 说明 Demo 准备 Demo 开始 总结 MongoDB 是一个比较成熟的文档数据库,在业务场景中,通常需要采集 MongoDB 的数据到数据仓库或数据湖中,面向分析场景使用。 Flink MongoDB CDC 是 Flink CDC 社区提供的一个用于捕获变更数据(Change Data Capturing)的 Flink 连接器,

    2024年01月20日
    浏览(47)
  • Flink CDC 基于mysql binlog 实时同步mysql表

    环境说明: flink 1.15.2 mysql 版本5.7    注意:需要开启binlog,因为增量同步是基于binlog捕获数据 windows11 IDEA 本地运行 先上官网使用说明和案例:MySQL CDC Connector — Flink CDC documentation 1. mysql开启binlog (注意,引擎是 InnoDB,如果是ndbcluster,本人测试是捕获不到binlog日志的,增量相

    2024年02月10日
    浏览(60)
  • Flink CDC 基于mysql binlog 实时同步mysql表(无主键)

    环境说明: flink 1.15.2 mysql 版本5.7    注意:需要开启binlog,因为增量同步是基于binlog捕获数据 windows11 IDEA 本地运行 具体前提设置,请看这篇,包含 binlog 设置、Maven...... Flink CDC 基于mysql binlog 实时同步mysql表_彩虹豆的博客-CSDN博客 经过不懈努力,终于从阿里help页面找到了支

    2024年02月08日
    浏览(47)
  • 基于 Flink CDC 构建 MySQL 到 Databend 的 实时数据同步

    这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 到 Databend 的实时数据同步。本教程的演示都将在 Flink SQL CLI 中进行,只涉及 SQL,无需一行 Java/Scala 代码,也无需安装 IDE。 假设我们有电子商务业务,商品的数据存储在 MySQL ,我们需要实时把它同步到 Databend 中。 接下来的内容

    2024年02月10日
    浏览(53)
  • 使用Flink CDC将Mysql中的数据实时同步到ES

    最近公司要搞搜索,需要把mysql中的数据同步到es中来进行搜索,由于公司已经搭建了flink集群,就打算用flink来做这个同步。本来以为很简单,跟着官网文档走就好了,结果没想到折腾了将近一周的时间…… 我也是没想到,这玩意网上资源竟然这么少,找到的全部都是通过

    2024年02月11日
    浏览(56)
  • Flink CDC 基于Oracle log archiving 实时同步Oracle表到Mysql

    环境说明: flink 1.15.2 Oracle 版本:Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production mysql 版本:5.7 windows11 IDEA 本地运行 先上官网使用说明和案例:Oracle CDC Connector — Flink CDC documentation 1. Oracle 开启 log archiving (1).启用 log archiving         a:以DBA用户连接数据库    

    2024年02月11日
    浏览(47)
  • Flink CDC 基于Oracle log archiving 实时同步Oracle表到Mysql(无主键)

    环境说明: flink 1.15.2 Oracle 版本:Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production mysql 版本:5.7 windows11 IDEA 本地运行 具体环境设置和maven依赖请看上篇:Flink CDC 基于Oracle log archiving 实时同步Oracle表到Mysql_彩虹豆的博客-CSDN博客 现在操作的是源表和目标表都无主键数

    2024年02月15日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包