考场作弊行为自动抓拍告警算法 yolov7

这篇具有很好参考价值的文章主要介绍了考场作弊行为自动抓拍告警算法 yolov7。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

考场作弊行为自动抓拍告警系统通过yolov7+python网络模型算法,考场作弊行为自动抓拍告警算法实时监测考场内所有考生的行为,对考生的行为进行自动抓拍,并分析判断是否存在作弊行为。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。

设计了几种可训练的 bag-of-freebies 方法,使得实时目标检测可以在不增加推理成本的情况下大大提高检测精度;对于目标检测方法的演进,研究者发现了两个新问题:一是重参数化的模块如何替换原始模块,二是动态标签分配策略如何处理分配给不同输出层的问题,并提出了解决这两个问题的方法;提出了实时目标检测器的「扩充(extend)」和「复合扩展(compound scale)」方法,以有效地利用参数和计算;该研究提出的方法可以有效减少 SOTA 实时目标检测器约 40% 的参数和 50% 的计算量,并具有更快的推理速度和更高的检测精度。

考场作弊行为自动抓拍告警算法 yolov7

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。文章来源地址https://www.toymoban.com/news/detail-511292.html

到了这里,关于考场作弊行为自动抓拍告警算法 yolov7的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【目标检测】YOLOv7算法实现(一):模型搭建

      本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。   本篇文章在 YOLOv5 算法实现的基础上,进一步完成 YOLOv7 算法的实现。 YOLOv7 相比于 YOLOv5 ,最

    2024年01月18日
    浏览(55)
  • YOLOv8算法改进【NO.97】借鉴YOLOv7算法的方法添加辅助训练头

     前   言        YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通: 第一, 创新主干特征提取网络,

    2024年01月22日
    浏览(50)
  • YOLOV7算法(三)损失函数ComputeLossOTA学习记录

    YOLOV7正负样本策略及ComputeLossOTA学习笔记 假设图中蓝色的点为GT的中心点,则YOLOV7中的ComputeLossOTA会把3个黄色的框视为正样本(对应着ComputeLossOTA类中的 find_3_positive 函数),而ComputeLossAuxOTA会把黄色框以及橙色框,总共5个框视为正样本(对应着ComputeLossAuxOTA类中的 find_5_positive 函数

    2024年02月11日
    浏览(47)
  • 【YOLOv7/YOLOv5系列算法改进NO.49】模型剪枝、蒸馏、压缩

    作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程

    2024年02月08日
    浏览(41)
  • ai皮带跑偏撕裂监测算法 yolov7

    ai皮带跑偏撕裂监测系统算法基于yolov7网络模型人工智能视觉技术,ai皮带跑偏撕裂监测算法模型自动识别现场画面中传送皮带撕裂、跑偏、偏移等情况,立即告警抓拍存档同步回传后台。YOLO 的核心思想就是把目标检测转变成一个 回归问题 ,利用整张图作为网络的输入,仅

    2024年02月05日
    浏览(85)
  • YOLOV7算法(一)test.py代码学习记录

    代码链接 :https://github.com/WongKinYiu/yolov7 输入指令 参数解析 上述代码中的参数基本与源码保持一致,只是修改了部分路径。 coco.yaml 如果已经提前下载好了coco2017数据集,可以注释掉代码: 根据解析参数,执行test() 模型加载 如果代码在gpu上运行,则将所有浮点参数和缓冲转

    2024年02月11日
    浏览(46)
  • MATLAB算法实战应用案例精讲-【目标检测】YOLOV7

    目录 前言  算法原理 算法结构 yolo分配策略 yolov5正负样本分配策略

    2024年02月05日
    浏览(57)
  • 【YOLOv7/YOLOv5系列算法改进NO.47】改进激活函数为GELU

    作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程

    2024年02月02日
    浏览(49)
  • YOLO系列 --- YOLOV7算法(四):YOLO V7算法网络结构解析

    今天来讲讲YOLO V7算法网络结构吧~ 在 train.py 中大概95行的地方开始创建网络,如下图(YOLO V7下载的时间不同,可能代码有少许的改动,所以行数跟我不一定一样) 我们进去发现,其实就是在 yolo.py 里面。后期,我们就会发现相关的网络结构都是在该py文件里面。这篇blog就主

    2024年02月05日
    浏览(46)
  • YOLO系列 --- YOLOV7算法(六):YOLO V7算法onnx模型部署

    有很多人来问我,基于YOLO v7算法训练出来一个权重文件,如何进行部署。所以特地写一篇部署的blog~ 一般,我们基于pytorch深度学习框架训练出来的权重文件是pt格式的,我们可以用python来直接调用这个文件。但是实际工业中,一般都是c++去调用权重文件的,所以我们需要将

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包