21个深度学习开源数据集分类汇总

这篇具有很好参考价值的文章主要介绍了21个深度学习开源数据集分类汇总。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深度学习的三大要素:数据、算法、算力。

数据在深度学习中占据着非常重要的地位,一个高质量的数据集往往能够提高模型训练的质量和预测的准确率。极市平台收集整理了21个国内外经典的开源数据,包含了目标检测、图像分割、图像分类、人脸、自动驾驶、姿态估计、目标跟踪等方向。

数据集下载汇总链接:https://www.cvmart.net/dataSets

数据集将会不断更新,欢迎大家持续关注!

一、目标检测

1.COCO2017数据集

COCO2017是2017年发布的COCO数据集的一个版本,主要用于COCO在2017年后持有的物体检测任务、关键点检测任务和全景分割任务。

21个深度学习开源数据集分类汇总

二、图像分割

1.LVIS数据集

LVIS是一个大规模细粒度词汇集标记数据集,该数据集针对超过 1000 类物体进行了约 200 万个高质量的实例分割标注,包含 164k 张图像。

21个深度学习开源数据集分类汇总

2.高密度人群及移动物体视频数据集

Crowd Segmentation Dataset 是一个高密度人群和移动物体视频数据,视频来自BBC Motion Gallery 和 Getty Images 网站。

21个深度学习开源数据集分类汇总

3.DAVIS 视频分割数据集

Densely Annotated Video Segmentation 是一个高清视频中的物体分割数据集,包括 50个 视频序列,3455个 帧标注,视频采集自高清 1080p 格式。

21个深度学习开源数据集分类汇总

三、图像分类

1.MNIST 手写数字图像数据集

MNIST数据集是一个手写阿拉伯数字图像识别数据集,图片分辨率为 20x20 灰度图图片,包含‘0 - 9’ 十组手写手写阿拉伯数字的图片。其中,训练样本 60000 ,测试样本 10000,数据为图片的像素点值,作者已经对数据集进行了压缩。

21个深度学习开源数据集分类汇总

2.Kaggle 垃圾分类图片数据集

该数据集是图片数据,分为训练集85%(Train)和测试集15%(Test)。其中O代表Organic(有机垃圾),R代表Recycle(可回收)

21个深度学习开源数据集分类汇总

四、人脸

1.IMDB-WIKI人脸数据集

IMDB-WIKI 500k+ 是一个包含名人人脸图像、年龄、性别的数据集,图像和年龄、性别信息从 IMDB 和 WiKi 网站抓取,总计 524230 张名人人脸图像及对应的年龄和性别。其中,获取自 IMDB 的 460723 张,获取自 WiKi 的 62328 张。

21个深度学习开源数据集分类汇总

2.WiderFace人脸检测数据集

WIDER FACE数据集是人脸检测的一个benchmark数据集,包含32203图像,以及393,703个标注人脸,其中,158,989个标注人脸位于训练集,39,,496个位于验证集。每一个子集都包含3个级别的检测难度:Easy,Medium,Hard。这些人脸在尺度,姿态,光照、表情、遮挡方面都有很大的变化范围。WIDER FACE选择的图像主要来源于公开数据集WIDER。制作者来自于香港中文大学,他们选择了WIDER的61个事件类别,对于每个类别,随机选择40%10%50%作为训练、验证、测试集。

21个深度学习开源数据集分类汇总

3.LFW 人像图像数据集

该数据集是用于研究无约束面部识别问题的面部照片数据库。数据集包含从网络收集的13000多张图像。每张脸都贴上了所画的人的名字,图片中的1680人在数据集中有两个或更多不同的照片。

21个深度学习开源数据集分类汇总

4.GENKI 人脸图像数据集

GENKI数据集是由加利福尼亚大学的机器概念实验室收集。该数据集包含GENKI-R2009a,GENKI-4K,GENKI-SZSL三个部分。GENKI-R2009a包含11159个图像,GENKI-4K包含4000个图像,分为“笑”和“不笑”两种,每个图片的人脸的尺度大小,姿势,光照变化,头的转动等都不一样,专门用于做笑脸识别。GENKI-SZSL包含3500个图像,这些图像包括广泛的背景,光照条件,地理位置,个人身份和种族等。

五、姿态估计

1.MPII人体模型数据集

MPII Human Shape 人体模型数据是一系列人体轮廓和形状的3D模型及工具。模型是从平面扫描数据库 CAESAR 学习得到。

21个深度学习开源数据集分类汇总

2.MPII人类姿态数据集

MPII 人体姿态数据集是用于评估人体关节姿势估计的最先进基准。该数据集包括大约 25,000 张图像,其中包含超过 40,000 个带有注释身体关节的人。这些图像是使用已建立的人类日常活动分类法系统收集的。总的来说,数据集涵盖了 410 项人类活动,每个图像都提供了一个活动标签。每张图像都是从 YouTube 视频中提取的,并提供前后未注释的帧。此外,测试集有更丰富的注释,包括身体部位遮挡和 3D 躯干和头部方向。

21个深度学习开源数据集分类汇总

六、自动驾驶

1.KITTI 道路数据集

道路和车道估计基准包括289次培训和290幅测试图像。我们在鸟瞰空间中评估道路和车道的估计性能。它包含不同类别的道路场景:城市无标记、城市标记、 城市多条标记车道以及以上三者的结合。

21个深度学习开源数据集分类汇总

2.CrackForest数据集

CrackForest数据集是一个带注释的道路裂缝图像数据库,可以大致反映城市路面状况。

21个深度学习开源数据集分类汇总

3.KITTI-2015立体声数据集

stero 2015 基准测试包含 200 个训练场景和 200 个测试场景(每个场景 4 幅彩色图像,以无损 png 格式保存)。与stereo 2012 和flow 2012 基准测试相比,它包含动态场景,在半自动过程中为其建立了真值。该数据集是通过在卡尔斯鲁厄中等规模城市、农村地区和高速公路上行驶而捕获的。每张图像最多可以看到 15 辆汽车和 30 名行人。

21个深度学习开源数据集分类汇总

4.KITTI-2015光流数据集

Flow 2015 基准测试包含 200 个训练场景和 200 个测试场景(每个场景 4 幅彩色图像,以无损 png 格式保存)。与stereo 2012 和flow 2012 基准测试相比,它包含动态场景,在半自动过程中为其建立了真值。该数据集是通过在卡尔斯鲁厄中等规模城市、农村地区和高速公路上行驶而捕获的。每张图像最多可以看到 15 辆汽车和 30 名行人。

5.KITTI-2015场景流数据集

Sceneflow 2015 基准测试包含 200 个训练场景和 200 个测试场景(每个场景 4 幅彩色图像,以无损 png 格式保存)。与stereo 2012 和flow 2012 基准测试相比,它包含动态场景,在半自动过程中为其建立了真值。该数据集是通过在卡尔斯鲁厄中等规模城市、农村地区和高速公路上行驶而捕获的。每张图像最多可以看到 15 辆汽车和 30 名行人。

6.KITTI深度数据集

KITTI-depth 包含超过 93,000 个深度图以及相应的原始 LiDaR 扫描和 RGB 图像。鉴于大量的训练数据,该数据集应允许训练复杂的深度学习模型,以完成深度补全和单幅图像深度预测的任务。此外,该数据集提供了带有未发布深度图的手动选择图像,作为这两个具有挑战性的任务的基准。

21个深度学习开源数据集分类汇总

七、目标跟踪

1.ALOV300++跟踪数据集

ALOV++,Amsterdam Library of Ordinary Videos for tracking 是一个物体追踪视频数据,旨在对不同的光线、通透度、泛着条件、背景杂乱程度、焦距下的相似物体的追踪。

21个深度学习开源数据集分类汇总

八、动作识别

1.HMDB人类动作视频数据集

由布朗大学发布的人类动作视频数据集,该数据集视频多数来源于电影,还有一部分来自公共数据库以及YouTube等网络视频库。数据库包含有6849段样本,分为51类,每类至少包含有101段样本。

21个深度学习开源数据集分类汇总

2.UCF50动作识别数据集

UCF50 是一个由中佛罗里达大学发布的动作识别数据集,由来自 youtube 的真实视频组成,包含 50 个动作类别,如棒球投球、篮球投篮、卧推、骑自行车、骑自行车、台球、蛙泳、挺举、跳水、击鼓等。对于所有 50 个类别,视频分为 25 组,其中每组由超过 4 个动作剪辑。同一组中的视频片段可能具有一些共同的特征,例如同一个人、相似背景、相似视点等。

21个深度学习开源数据集分类汇总

3.SBU Kinect 交互数据集

SBU Kinect Interaction是一个复杂的人类活动数据集,描述了两个人的交互,包括同步视频、深度和运动捕捉数据。

21个深度学习开源数据集分类汇总

-------------------

END

-------------------文章来源地址https://www.toymoban.com/news/detail-511305.html

到了这里,关于21个深度学习开源数据集分类汇总的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习关键要素:数据集汇总与分享

    在深度学习的应用中,数据被认为是最重要的因素之一。因此,选择一个好的数据集对于深度学习的成功至关重要。在选择数据集时,不仅需要关注数据量的大小、多样性以及质量,还要考虑数据集是否代表了所研究问题的真实情况。本文整理了当前深度学习领域公开的数据

    2024年02月13日
    浏览(49)
  • 大数据 深度学习毕业论文(毕设)课题汇总

    以下为学长手动整理python 毕业设计 项目,完全可以作为当前较新的毕业设计题目选择方向,给各位同学参考 毕设帮助,开题指导,资料分享,疑问解答(见文末) 1 基于MapReduce的气候数据的分析 2 基于的文本知识的挖掘系统的设计与实现 3 基于概率图模型的蛋白质功能

    2024年03月17日
    浏览(52)
  • 机器学习、深度学习项目开发业务数据场景梳理汇总记录二

    本文的主要作用是对历史项目开发过程中接触到的业务数据进行整体的汇总梳理,文章会随着项目的开发推进不断更新。  这里是续文,因为CSDN单篇文章内容太大的话就会崩溃的,别问我怎么知道的,问就是血泪教训,辛辛苦苦写了一天的东西就那么一刹那崩溃就没了。。。

    2024年02月13日
    浏览(42)
  • Pytorch目标分类深度学习自定义数据集训练

    目录 一,Pytorch简介; 二,环境配置; 三,自定义数据集; 四,模型训练; 五,模型验证;         PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch 基于 Python: PyTorch 以 Python 为中心或“pythonic”,旨在深度集成 Python 代码,而不是

    2024年02月07日
    浏览(60)
  • 动手学深度学习(2)-3.5 图像分类数据集

    这里主要是看一下如何加载数据集,并且生成批次训练的数据。 最大的收获是,知道了如何在训练阶段提高模型训练的性能 增加batch_size 增加num_worker 数据预加载 图像分类数据集 主要包介绍 这个模块主要是将如何加载数据集,并且生成一个迭代器,每一次访问都会俺批次生

    2024年02月09日
    浏览(42)
  • 文献学习-21-DaFoEs:混合数据集以推广微创机器人手术中的视觉状态深度学习力估计

    DaFoEs: Mixing Datasets Towards the Generalization of Vision-State Deep-Learning Force Estimation in Minimally Invasive Robotic Surgery Authors:  Mikel De Iturrate Reyzabal, Graduate Student Member, IEEE, Mingcong Chen, Wei Huang, Sebastien Ourselin, and Hongbin Liu Key words:  Deep learning in grasping and manipulation, surgical robotics: Laparoscopy, com

    2024年03月21日
    浏览(58)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(108)
  • 【深度学习】pytorch——实现CIFAR-10数据集的分类

    笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 往期文章: 【深度学习】pytorch——快速入门 CIFAR-10是一个常用的图像分类数据集,每张图片都是 3×32×32,3通道彩色图片,分辨率为 32×32。 它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于

    2024年02月06日
    浏览(52)
  • 大数据毕业设计 深度学习垃圾图像分类系统 - opencv python

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月02日
    浏览(72)
  • 三 动手学深度学习v2 —— Softmax回归+损失函数+图片分类数据集

    softmax回归 损失函数 1. softmax回归 回归vs分类: 回归估计一个连续值 分类预测一个离散类别 从回归到多类分类 回归 单连续数值输出 自然区间R 跟真实值的误差作为损失 分类 通常多个输出 输出i是预测为第i类的置信度 总结: 2. 损失函数 L2 loss 均方损失 l ( y , y ′ ) = 1 2 ( y −

    2024年02月14日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包