Kafka怎么保证数据不丢失,不重复

这篇具有很好参考价值的文章主要介绍了Kafka怎么保证数据不丢失,不重复。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  1. 生产者数据不丢失
    Kafka的ack机制:在kafka发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常能够被收到,其中状态有0,1,-1.
    ack = 0:producer不等待broker同步完成的确认,继续发送下一条(批)信息。
    ack = 1(默认):producer要等待leader成功收到数据并确认,才发送下一条message。
    ack = -1:producer得到follower确认,才发送下一条数据。
    同步模式:ack设置为0,风险很大,一般不建议设置为0。即使设置为1,也会随着leader宕机丢失数据。所以如果要严格保证生产端数据不丢失,可设置为-1。
    异步模式:也会考虑ack的状态,除此之外,异步模式下的有个buffer,通过buffer来进行控制数据的发送,有两个值来进行控制,时间阈值与消息的数量阈值,如果buffer满了数据还没有发送出去,有个选项是配置是否立即清空buffer。可以设置为-1,永久阻塞,也就数据不再生产。异步模式下,即使设置为-1。也可能因为程序员的不科学操作,操作数据丢失,比如kill -9,但这是特别的例外情况。

  2. 消费者数据不丢失
    通过offset commit来保证数据的不丢失,kafka每次记录自己消费的offset数值,下次继续消费的时候,会接着上次的offset进行消费。
    而offset的信息在kafka0.8版本之前保存在zookeeper中,在0.8版本之后保存到topic中,即使消费者在运行过程中挂掉了,再次启动的时候会找到offset的值,找到之前消费消息的位置,接着消费,由于 offset 的信息写入的时候并不是每条消息消费完成后都写入的,所以这种情况有可能会造成重复消费,但是不会丢失消息。
    唯一例外的情况是,我们在程序中给原本做不同功能的两个consumer组设置 KafkaSpoutConfig.bulider.setGroupid的时候设置成了一样的groupid,这种情况会导致这两个组共享同一份数据,就会产生组A消费partition1,partition2中的消息,组B消费partition3的消息,这样每个组消费的消息都会丢失,都是不完整的。 为了保证每个组都独享一份消息数据,groupid一定不要重复才行。

  3. broker数据不丢失
    每个broker中的partition一般设置有replication(副本)个数,生产者写入的时候首先根据分发策略(有partition按partition,有key按key,都没有按轮询)写入到leader中,follower(副本)再跟leader同步数据,有了备份也可以保证消息数据不丢失。文章来源地址https://www.toymoban.com/news/detail-511502.html

到了这里,关于Kafka怎么保证数据不丢失,不重复的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kafka - 获取 Topic 生产者发布数据命令

    从头开始获取 20 条数据(等价于时间升序) ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic your-topic --from-beginning --max-messages 20 获取最新 20 条数据(等价于时间降序)去掉 --from-beginning 即可(默认) ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic your-topic --max-me

    2024年02月14日
    浏览(37)
  • 大数据开发之Kafka(概述、快速入门、生产者)

    Kafka是一个分布式的基于发布/订阅模式的消息队列,主要应用于大数据实时处理领域。 发布/订阅:消息的发布者不会将消息直接发送给特定的订阅者,而是将发布的消息分为不同的类别,订阅者只接收感兴趣的消息。 目前企业中比较常见的消息队列产品主要有Kafka、ActiveM

    2024年01月19日
    浏览(59)
  • Kafka3.0.0版本——生产者 数据去重

    1.1、至少一次 至少一次(At Least Once )的含义 生产者发送数据到kafka集群,kafka集群至少接收到一次数据。 至少一次的条件: ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2 1.2、最多一次 最多一次(At Most Once )的含义 生产者发送数据到kafka集群,

    2024年02月01日
    浏览(38)
  • Kafka3.0.0版本——生产者数据有序与乱序

    单分区内,数据有序。如下图partion0、partion1、partion2分区内,各自分区内的数据有序。 2.1、kafka1.x版本之前保证数据单分区有序的条件 kafka在1.x版本之前保证数据单分区有序,条件如下: 2.2、kafka1.x版本及以后保证数据单分区有序的条件 未开启幂等性 开启幂等性 2.3、kafka1

    2023年04月27日
    浏览(43)
  • 第3、4章 Kafka 生产者 和 消费者 ——向 Kafka 写入数据 和读取数据

    重要的特性: 消息通过 队列来进行交换 每条消息仅会传递给一个消费者 消息传递有先后顺序,消息被消费后从队列删除(除非使用了消息优先级) 生产者或者消费者可以动态加入 传送模型: 异步即发即弃:生产者发送一条消息,不会等待收到一个响应 异步请求、应答:

    2024年02月20日
    浏览(36)
  • SparkStreaming学习——读取socket的数据和kafka生产者的消息

    目录 一、Spark Streaming概述 二、添加依赖 三、配置log4j 1.依赖下载好后打开IDEA最左侧的外部库 2.找到spark-core 3.找到apache.spark目录 4.找到log4j-defaults.properties文件 5.将该文件放在资源目录下,并修改文件名 6.修改log4j.properties第19行的内容 四、Spark Streaming读取Socket数据流 1.代码编

    2023年04月27日
    浏览(35)
  • RabbitMQ 生产者-消息丢失 之 场景分析

      生产者发送消息的流程如下:首先生产者和RabbitMQ服务器建立连接,然后创建信道,通过信道发送消息给RabbitMQ服务器,RabbitMQ服务器接收到消息后交由交换机进行消息存储,交换机根据不同策略将消息路由到指定队列中。在此过程中,可能会存在以下消息丢失的场景:

    2024年02月14日
    浏览(42)
  • java:Kafka生产者推送数据与消费者接收数据(参数配置以及案例)

    bootstrap.servers :Kafka集群中的Broker列表,格式为host1:port1,host2:port2,…。生产者会从这些Broker中选择一个可用的Broker作为消息发送的目标Broker。 acks :Broker对消息的确认模式。可选值为0、1、all。0表示生产者不会等待Broker的任何确认消息;1表示生产者会等待Broker的Leader副本确认

    2024年02月16日
    浏览(44)
  • 三、Kafka生产者1---Kafka生产者初始化-new KafkaProducer

    概述 本文主要是分享Kafka初始化生产者的 大体过程 初始化过程中会新建很多对象,本文暂先分享部分对象 1.分区器---Partitioner partitioner 2.重试时间---long retryBackoffMs 3.序列化器---SerializerK keySerializer,SerializerV valueSerializer 4.拦截器--- ListProducerInterceptorK, V interceptorList 5.累加器-

    2024年03月14日
    浏览(60)
  • Kafka生产者原理 kafka生产者发送流程 kafka消息发送到集群步骤 kafka如何发送消息 kafka详解

    kafka尚硅谷视频: 10_尚硅谷_Kafka_生产者_原理_哔哩哔哩_bilibili ​      1. producer初始化:加载默认配置,以及配置的参数,开启网络线程      2. 拦截器拦截      3. 序列化器进行消息key, value序列化      4. 进行分区      5. kafka broker集群 获取metaData      6. 消息缓存到

    2024年02月11日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包